Metamath Proof Explorer


Theorem cbvrexdva

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Hypothesis cbvraldva.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbvrexdva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvraldva.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 1 notbid ( ( 𝜑𝑥 = 𝑦 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
3 2 cbvraldva ( 𝜑 → ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ∀ 𝑦𝐴 ¬ 𝜒 ) )
4 ralnex ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥𝐴 𝜓 )
5 ralnex ( ∀ 𝑦𝐴 ¬ 𝜒 ↔ ¬ ∃ 𝑦𝐴 𝜒 )
6 3 4 5 3bitr3g ( 𝜑 → ( ¬ ∃ 𝑥𝐴 𝜓 ↔ ¬ ∃ 𝑦𝐴 𝜒 ) )
7 6 con4bid ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐴 𝜒 ) )