Metamath Proof Explorer


Theorem cbvrexsv

Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexsvw when possible. (Contributed by NM, 2-Mar-2008) (Revised by Andrew Salmon, 11-Jul-2011) (New usage is discouraged.)

Ref Expression
Assertion cbvrexsv xAφyAyxφ

Proof

Step Hyp Ref Expression
1 nfv zφ
2 nfs1v xzxφ
3 sbequ12 x=zφzxφ
4 1 2 3 cbvrex xAφzAzxφ
5 nfv yφ
6 5 nfsb yzxφ
7 nfv zyxφ
8 sbequ z=yzxφyxφ
9 6 7 8 cbvrex zAzxφyAyxφ
10 4 9 bitri xAφyAyxφ