Metamath Proof Explorer


Theorem cbvsumi

Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005)

Ref Expression
Hypotheses cbvsumi.1 _kB
cbvsumi.2 _jC
cbvsumi.3 j=kB=C
Assertion cbvsumi jAB=kAC

Proof

Step Hyp Ref Expression
1 cbvsumi.1 _kB
2 cbvsumi.2 _jC
3 cbvsumi.3 j=kB=C
4 nfcv _kA
5 nfcv _jA
6 3 4 5 1 2 cbvsum jAB=kAC