Metamath Proof Explorer


Theorem ccased

Description: Deduction for combining cases. (Contributed by NM, 9-May-2004)

Ref Expression
Hypotheses ccased.1 φψχη
ccased.2 φθχη
ccased.3 φψτη
ccased.4 φθτη
Assertion ccased φψθχτη

Proof

Step Hyp Ref Expression
1 ccased.1 φψχη
2 ccased.2 φθχη
3 ccased.3 φψτη
4 ccased.4 φθτη
5 1 com12 ψχφη
6 2 com12 θχφη
7 3 com12 ψτφη
8 4 com12 θτφη
9 5 6 7 8 ccase ψθχτφη
10 9 com12 φψθχτη