Metamath Proof Explorer


Theorem cdeqim

Description: Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses cdeqnot.1 CondEq x = y φ ψ
cdeqim.1 CondEq x = y χ θ
Assertion cdeqim CondEq x = y φ χ ψ θ

Proof

Step Hyp Ref Expression
1 cdeqnot.1 CondEq x = y φ ψ
2 cdeqim.1 CondEq x = y χ θ
3 1 cdeqri x = y φ ψ
4 2 cdeqri x = y χ θ
5 3 4 imbi12d x = y φ χ ψ θ
6 5 cdeqi CondEq x = y φ χ ψ θ