Description: Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
| cdeqim.1 | |- CondEq ( x = y -> ( ch <-> th ) ) |
||
| Assertion | cdeqim | |- CondEq ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
| 2 | cdeqim.1 | |- CondEq ( x = y -> ( ch <-> th ) ) |
|
| 3 | 1 | cdeqri | |- ( x = y -> ( ph <-> ps ) ) |
| 4 | 2 | cdeqri | |- ( x = y -> ( ch <-> th ) ) |
| 5 | 3 4 | imbi12d | |- ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |
| 6 | 5 | cdeqi | |- CondEq ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |