Metamath Proof Explorer


Theorem cdeqim

Description: Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses cdeqnot.1
|- CondEq ( x = y -> ( ph <-> ps ) )
cdeqim.1
|- CondEq ( x = y -> ( ch <-> th ) )
Assertion cdeqim
|- CondEq ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) )

Proof

Step Hyp Ref Expression
1 cdeqnot.1
 |-  CondEq ( x = y -> ( ph <-> ps ) )
2 cdeqim.1
 |-  CondEq ( x = y -> ( ch <-> th ) )
3 1 cdeqri
 |-  ( x = y -> ( ph <-> ps ) )
4 2 cdeqri
 |-  ( x = y -> ( ch <-> th ) )
5 3 4 imbi12d
 |-  ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) )
6 5 cdeqi
 |-  CondEq ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) )