Description: Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
cdeqim.1 | |- CondEq ( x = y -> ( ch <-> th ) ) |
||
Assertion | cdeqim | |- CondEq ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
2 | cdeqim.1 | |- CondEq ( x = y -> ( ch <-> th ) ) |
|
3 | 1 | cdeqri | |- ( x = y -> ( ph <-> ps ) ) |
4 | 2 | cdeqri | |- ( x = y -> ( ch <-> th ) ) |
5 | 3 4 | imbi12d | |- ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |
6 | 5 | cdeqi | |- CondEq ( x = y -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |