Metamath Proof Explorer


Theorem cdleme16aN

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, s \/ u =/= t \/ u. (Contributed by NM, 9-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
Assertion cdleme16aN KHLWHPA¬P˙WQASATAPQST¬U˙S˙TS˙UT˙U

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 simp1ll KHLWHPA¬P˙WQASATAPQST¬U˙S˙TKHL
8 simp22 KHLWHPA¬P˙WQASATAPQST¬U˙S˙TSA
9 simp23 KHLWHPA¬P˙WQASATAPQST¬U˙S˙TTA
10 simp1l KHLWHPA¬P˙WQASATAPQST¬U˙S˙TKHLWH
11 simp1r KHLWHPA¬P˙WQASATAPQST¬U˙S˙TPA¬P˙W
12 simp21 KHLWHPA¬P˙WQASATAPQST¬U˙S˙TQA
13 simp31 KHLWHPA¬P˙WQASATAPQST¬U˙S˙TPQ
14 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
15 10 11 12 13 14 syl112anc KHLWHPA¬P˙WQASATAPQST¬U˙S˙TUA
16 simp32 KHLWHPA¬P˙WQASATAPQST¬U˙S˙TST
17 simp33 KHLWHPA¬P˙WQASATAPQST¬U˙S˙T¬U˙S˙T
18 eqid LPlanesK=LPlanesK
19 1 2 4 18 lplni2 KHLSATAUAST¬U˙S˙TS˙T˙ULPlanesK
20 7 8 9 15 16 17 19 syl132anc KHLWHPA¬P˙WQASATAPQST¬U˙S˙TS˙T˙ULPlanesK
21 eqid S˙T˙U=S˙T˙U
22 2 4 18 21 lplnllnneN KHLSATAUAS˙T˙ULPlanesKS˙UT˙U
23 7 8 9 15 20 22 syl131anc KHLWHPA¬P˙WQASATAPQST¬U˙S˙TS˙UT˙U