Metamath Proof Explorer


Theorem cdleme17d

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. We show, in their notation, f_s(p)=q. TODO FIX COMMENT. (Contributed by NM, 11-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B=BaseK
cdlemef46.l ˙=K
cdlemef46.j ˙=joinK
cdlemef46.m ˙=meetK
cdlemef46.a A=AtomsK
cdlemef46.h H=LHypK
cdlemef46.u U=P˙Q˙W
cdlemef46.d D=t˙U˙Q˙P˙t˙W
cdlemefs46.e E=P˙Q˙D˙s˙t˙W
cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme17d KHLWHPA¬P˙WQA¬Q˙WFP=Q

Proof

Step Hyp Ref Expression
1 cdlemef46.b B=BaseK
2 cdlemef46.l ˙=K
3 cdlemef46.j ˙=joinK
4 cdlemef46.m ˙=meetK
5 cdlemef46.a A=AtomsK
6 cdlemef46.h H=LHypK
7 cdlemef46.u U=P˙Q˙W
8 cdlemef46.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 1 2 3 4 5 6 7 8 9 10 cdleme17d4 KHLWHPA¬P˙WQA¬Q˙WP=QFP=Q
12 1 2 3 4 5 6 7 8 9 10 cdleme17d3 KHLWHPA¬P˙WQA¬Q˙WPQFP=Q
13 11 12 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WFP=Q