Metamath Proof Explorer


Theorem cdleme17d3

Description: TODO: FIX COMMENT. (Contributed by NM, 5-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B = Base K
cdlemef46.l ˙ = K
cdlemef46.j ˙ = join K
cdlemef46.m ˙ = meet K
cdlemef46.a A = Atoms K
cdlemef46.h H = LHyp K
cdlemef46.u U = P ˙ Q ˙ W
cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdleme17d3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = Q

Proof

Step Hyp Ref Expression
1 cdlemef46.b B = Base K
2 cdlemef46.l ˙ = K
3 cdlemef46.j ˙ = join K
4 cdlemef46.m ˙ = meet K
5 cdlemef46.a A = Atoms K
6 cdlemef46.h H = LHyp K
7 cdlemef46.u U = P ˙ Q ˙ W
8 cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q K HL W H
12 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P A ¬ P ˙ W
13 simpl3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q Q A ¬ Q ˙ W
14 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P Q
15 2 3 5 6 cdlemb2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q
16 11 12 13 14 15 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q
17 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
18 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q P Q
19 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q e A
20 simp3rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q ¬ e ˙ W
21 19 20 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q e A ¬ e ˙ W
22 simp3rr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q ¬ e ˙ P ˙ Q
23 1 2 3 4 5 6 7 8 9 10 cdleme17d2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q F P = Q
24 17 18 21 22 23 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q F P = Q
25 24 3expia K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q F P = Q
26 25 expd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q F P = Q
27 26 rexlimdv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q e A ¬ e ˙ W ¬ e ˙ P ˙ Q F P = Q
28 16 27 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = Q