Metamath Proof Explorer


Theorem cdleme19d

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114. D , F , G represent s_2, f(s), f(t). We prove f(s) \/ s_2 = f(s) \/ f(t). (Contributed by NM, 14-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
Assertion cdleme19d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙D=F˙G

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 1 2 3 4 5 6 7 8 9 10 cdleme19b KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TD˙F˙G
12 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKHL
13 hlcvl KHLKCvLat
14 12 13 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKCvLat
15 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TWH
16 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TSA
17 simp21r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬S˙W
18 simp23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TRA
19 simp33l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TR˙P˙Q
20 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬S˙P˙Q
21 1 2 3 4 5 9 cdlemeda KHLWHSA¬S˙WRAR˙P˙Q¬S˙P˙QDA
22 12 15 16 17 18 19 20 21 syl223anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TDA
23 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKHLWH
24 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPA¬P˙W
25 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TQA¬Q˙W
26 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TTA¬T˙W
27 simp31l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPQ
28 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬T˙P˙Q
29 1 2 3 4 5 6 8 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQ¬T˙P˙QGA
30 23 24 25 26 27 28 29 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TGA
31 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TSA¬S˙W
32 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
33 23 24 25 31 27 20 32 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TFA
34 1 2 3 4 5 6 7 8 9 10 cdleme19c KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WRAPQ¬S˙P˙QFD
35 12 15 24 25 31 18 27 20 34 syl233anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TFD
36 35 necomd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TDF
37 1 2 4 cvlatexchb1 KCvLatDAGAFADFD˙F˙GF˙D=F˙G
38 14 22 30 33 36 37 syl131anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TD˙F˙GF˙D=F˙G
39 11 38 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙D=F˙G