Metamath Proof Explorer


Theorem cdleme19e

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, line 2. D , F , Y , G represent s_2, f(s), t_2, f(t). We prove f(s) \/ s_2=f(t) \/ t_2. (Contributed by NM, 14-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
Assertion cdleme19e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙D=G˙Y

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKHL
12 11 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKLat
13 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TWH
14 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPA
15 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TQA
16 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TSA
17 eqid BaseK=BaseK
18 1 2 3 4 5 6 7 17 cdleme1b KHLWHPAQASAFBaseK
19 11 13 14 15 16 18 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TFBaseK
20 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TTA
21 1 2 3 4 5 6 8 17 cdleme1b KHLWHPAQATAGBaseK
22 11 13 14 15 20 21 syl23anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TGBaseK
23 17 2 latjcom KLatFBaseKGBaseKF˙G=G˙F
24 12 19 22 23 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙G=G˙F
25 1 2 3 4 5 6 7 8 9 10 cdleme19d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙D=F˙G
26 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TKHLWH
27 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPA¬P˙W
28 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TQA¬Q˙W
29 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TTA¬T˙W
30 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TSA¬S˙W
31 simp23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TRA
32 simp31l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPQ
33 simp31r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TST
34 33 necomd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TTS
35 32 34 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TPQTS
36 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬T˙P˙Q
37 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬S˙P˙Q
38 36 37 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙T¬T˙P˙Q¬S˙P˙Q
39 simp33l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TR˙P˙Q
40 simp33r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TR˙S˙T
41 2 4 hlatjcom KHLSATAS˙T=T˙S
42 11 16 20 41 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TS˙T=T˙S
43 40 42 breqtrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TR˙T˙S
44 39 43 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TR˙P˙QR˙T˙S
45 1 2 3 4 5 6 8 7 10 9 cdleme19d KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WSA¬S˙WRAPQTS¬T˙P˙Q¬S˙P˙QR˙P˙QR˙T˙SG˙Y=G˙F
46 26 27 28 29 30 31 35 38 44 45 syl333anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TG˙Y=G˙F
47 24 25 46 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙D=G˙Y