Metamath Proof Explorer


Theorem cdleme25cl

Description: Show closure of the unique element in cdleme25c . (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme24.b B=BaseK
cdleme24.l ˙=K
cdleme24.j ˙=joinK
cdleme24.m ˙=meetK
cdleme24.a A=AtomsK
cdleme24.h H=LHypK
cdleme24.u U=P˙Q˙W
cdleme24.f F=s˙U˙Q˙P˙s˙W
cdleme24.n N=P˙Q˙F˙R˙s˙W
cdleme25cl.i I=ιuB|sA¬s˙W¬s˙P˙Qu=N
Assertion cdleme25cl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QIB

Proof

Step Hyp Ref Expression
1 cdleme24.b B=BaseK
2 cdleme24.l ˙=K
3 cdleme24.j ˙=joinK
4 cdleme24.m ˙=meetK
5 cdleme24.a A=AtomsK
6 cdleme24.h H=LHypK
7 cdleme24.u U=P˙Q˙W
8 cdleme24.f F=s˙U˙Q˙P˙s˙W
9 cdleme24.n N=P˙Q˙F˙R˙s˙W
10 cdleme25cl.i I=ιuB|sA¬s˙W¬s˙P˙Qu=N
11 1 2 3 4 5 6 7 8 9 cdleme25c KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙Q∃!uBsA¬s˙W¬s˙P˙Qu=N
12 riotacl ∃!uBsA¬s˙W¬s˙P˙Qu=NιuB|sA¬s˙W¬s˙P˙Qu=NB
13 11 12 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QιuB|sA¬s˙W¬s˙P˙Qu=NB
14 10 13 eqeltrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QIB