Metamath Proof Explorer


Theorem cdleme26fALTN

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 6th and 7th lines on p. 115. F , N represent f(t), f_t(s) respectively. If t <_ t \/ v, then f_t(s) <_ f(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme26.b B=BaseK
cdleme26.l ˙=K
cdleme26.j ˙=joinK
cdleme26.m ˙=meetK
cdleme26.a A=AtomsK
cdleme26.h H=LHypK
cdleme26f.u U=P˙Q˙W
cdleme26f.f F=t˙U˙Q˙P˙t˙W
cdleme26f.n N=P˙Q˙F˙S˙t˙W
cdleme26f.i I=ιuB|tA¬t˙W¬t˙P˙Qu=N
Assertion cdleme26fALTN KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WI˙F˙V

Proof

Step Hyp Ref Expression
1 cdleme26.b B=BaseK
2 cdleme26.l ˙=K
3 cdleme26.j ˙=joinK
4 cdleme26.m ˙=meetK
5 cdleme26.a A=AtomsK
6 cdleme26.h H=LHypK
7 cdleme26f.u U=P˙Q˙W
8 cdleme26f.f F=t˙U˙Q˙P˙t˙W
9 cdleme26f.n N=P˙Q˙F˙S˙t˙W
10 cdleme26f.i I=ιuB|tA¬t˙W¬t˙P˙Qu=N
11 simp11 KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WKHLWH
12 simp21 KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WPA¬P˙W
13 simp22 KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WQA¬Q˙W
14 simp23l KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WSA
15 simp23r KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙W¬S˙W
16 simp12l KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WPQ
17 simp12r KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WS˙P˙Q
18 1 2 3 4 5 6 7 8 9 10 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQS˙P˙QIB
19 11 12 13 14 15 16 17 18 syl322anc KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WIB
20 simp13l KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WtA
21 simp31 KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙W¬t˙W¬t˙P˙Q
22 1 fvexi BV
23 22 10 riotasv IBtA¬t˙W¬t˙P˙QI=N
24 19 20 21 23 syl3anc KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WI=N
25 simp23 KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WSA¬S˙W
26 simp33 KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WVAV˙W
27 simp32 KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WStS˙t˙V
28 2 3 4 5 6 7 8 9 cdleme22f KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WtAVAV˙WStS˙t˙VN˙F˙V
29 11 12 13 25 20 26 27 28 syl331anc KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WN˙F˙V
30 24 29 eqbrtrd KHLWHPQS˙P˙QtA¬t˙WPA¬P˙WQA¬Q˙WSA¬S˙W¬t˙W¬t˙P˙QStS˙t˙VVAV˙WI˙F˙V