Metamath Proof Explorer


Theorem cdleme32sn1awN

Description: Show that [_ R / s ]_ N is an atom not under W when R .<_ ( P .\/ Q ) . (Contributed by NM, 6-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32a1.y Y=P˙Q˙D˙R˙t˙W
cdleme32a1.z Z=ιyB|tA¬t˙W¬t˙P˙Qy=Y
Assertion cdleme32sn1awN KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sNA¬R/sN˙W

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32a1.y Y=P˙Q˙D˙R˙t˙W
14 cdleme32a1.z Z=ιyB|tA¬t˙W¬t˙P˙Qy=Y
15 1 2 3 4 5 6 7 9 10 11 12 13 14 cdlemefs32sn1aw KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sNA¬R/sN˙W