Metamath Proof Explorer


Theorem cdlemefs32sn1aw

Description: Show that [_ R / s ]_ N is an atom not under W when R .<_ ( P .\/ Q ) . (Contributed by NM, 24-Mar-2013)

Ref Expression
Hypotheses cdlemefs32.b B=BaseK
cdlemefs32.l ˙=K
cdlemefs32.j ˙=joinK
cdlemefs32.m ˙=meetK
cdlemefs32.a A=AtomsK
cdlemefs32.h H=LHypK
cdlemefs32.u U=P˙Q˙W
cdlemefs32.d D=t˙U˙Q˙P˙t˙W
cdlemefs32.e E=P˙Q˙D˙s˙t˙W
cdlemefs32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdlemefs32.n N=ifs˙P˙QIC
cdlemefs32a1.y Y=P˙Q˙D˙R˙t˙W
cdlemefs32a1.z Z=ιyB|tA¬t˙W¬t˙P˙Qy=Y
Assertion cdlemefs32sn1aw KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sNA¬R/sN˙W

Proof

Step Hyp Ref Expression
1 cdlemefs32.b B=BaseK
2 cdlemefs32.l ˙=K
3 cdlemefs32.j ˙=joinK
4 cdlemefs32.m ˙=meetK
5 cdlemefs32.a A=AtomsK
6 cdlemefs32.h H=LHypK
7 cdlemefs32.u U=P˙Q˙W
8 cdlemefs32.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs32.e E=P˙Q˙D˙s˙t˙W
10 cdlemefs32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
11 cdlemefs32.n N=ifs˙P˙QIC
12 cdlemefs32a1.y Y=P˙Q˙D˙R˙t˙W
13 cdlemefs32a1.z Z=ιyB|tA¬t˙W¬t˙P˙Qy=Y
14 1 fvexi BV
15 nfv tKHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙Q
16 nfra1 ttA¬t˙W¬t˙P˙Qy=Y
17 nfcv _tB
18 16 17 nfriota _tιyB|tA¬t˙W¬t˙P˙Qy=Y
19 13 18 nfcxfr _tZ
20 19 nfel1 tZA
21 nfcv _t˙
22 nfcv _tW
23 19 21 22 nfbr tZ˙W
24 23 nfn t¬Z˙W
25 20 24 nfan tZA¬Z˙W
26 25 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtZA¬Z˙W
27 13 a1i KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QZ=ιyB|tA¬t˙W¬t˙P˙Qy=Y
28 eleq1 Y=ZYAZA
29 breq1 Y=ZY˙WZ˙W
30 29 notbid Y=Z¬Y˙W¬Z˙W
31 28 30 anbi12d Y=ZYA¬Y˙WZA¬Z˙W
32 31 adantl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QY=ZYA¬Y˙WZA¬Z˙W
33 simpl1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QKHLWHPA¬P˙WQA¬Q˙W
34 simpl2r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QRA¬R˙W
35 simprl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QtA
36 simprrl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Q¬t˙W
37 35 36 jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QtA¬t˙W
38 simpl2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QPQ
39 simpl3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QR˙P˙Q
40 simprrr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Q¬t˙P˙Q
41 2 3 4 5 6 7 8 12 cdleme7ga KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WtA¬t˙WPQR˙P˙Q¬t˙P˙QYA
42 2 3 4 5 6 7 8 12 cdleme7 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WtA¬t˙WPQR˙P˙Q¬t˙P˙Q¬Y˙W
43 41 42 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WtA¬t˙WPQR˙P˙Q¬t˙P˙QYA¬Y˙W
44 33 34 37 38 39 40 43 syl123anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QYA¬Y˙W
45 44 ex KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙QYA¬Y˙W
46 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QKHLWHPA¬P˙WQA¬Q˙W
47 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QRA
48 simp2rr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙Q¬R˙W
49 simp2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QPQ
50 simp3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR˙P˙Q
51 1 2 3 4 5 6 7 8 12 13 cdleme25cl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QZB
52 46 47 48 49 50 51 syl122anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QZB
53 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QKHLWH
54 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QPA¬P˙W
55 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QQA¬Q˙W
56 2 3 5 6 cdlemb2 KHLWHPA¬P˙WQA¬Q˙WPQtA¬t˙W¬t˙P˙Q
57 53 54 55 49 56 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QtA¬t˙W¬t˙P˙Q
58 15 26 27 32 45 52 57 riotasv3d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QBVZA¬Z˙W
59 14 58 mpan2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QZA¬Z˙W
60 9 10 11 12 13 cdleme31sn1c RAR˙P˙QR/sN=Z
61 47 50 60 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sN=Z
62 61 eleq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sNAZA
63 61 breq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sN˙WZ˙W
64 63 notbid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙Q¬R/sN˙W¬Z˙W
65 62 64 anbi12d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sNA¬R/sN˙WZA¬Z˙W
66 59 65 mpbird KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QR/sNA¬R/sN˙W