Metamath Proof Explorer


Theorem cdlemefs32sn1aw

Description: Show that [_ R / s ]_ N is an atom not under W when R .<_ ( P .\/ Q ) . (Contributed by NM, 24-Mar-2013)

Ref Expression
Hypotheses cdlemefs32.b
|- B = ( Base ` K )
cdlemefs32.l
|- .<_ = ( le ` K )
cdlemefs32.j
|- .\/ = ( join ` K )
cdlemefs32.m
|- ./\ = ( meet ` K )
cdlemefs32.a
|- A = ( Atoms ` K )
cdlemefs32.h
|- H = ( LHyp ` K )
cdlemefs32.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemefs32.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs32.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemefs32.i
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )
cdlemefs32.n
|- N = if ( s .<_ ( P .\/ Q ) , I , C )
cdlemefs32a1.y
|- Y = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) )
cdlemefs32a1.z
|- Z = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = Y ) )
Assertion cdlemefs32sn1aw
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )

Proof

Step Hyp Ref Expression
1 cdlemefs32.b
 |-  B = ( Base ` K )
2 cdlemefs32.l
 |-  .<_ = ( le ` K )
3 cdlemefs32.j
 |-  .\/ = ( join ` K )
4 cdlemefs32.m
 |-  ./\ = ( meet ` K )
5 cdlemefs32.a
 |-  A = ( Atoms ` K )
6 cdlemefs32.h
 |-  H = ( LHyp ` K )
7 cdlemefs32.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemefs32.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs32.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemefs32.i
 |-  I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )
11 cdlemefs32.n
 |-  N = if ( s .<_ ( P .\/ Q ) , I , C )
12 cdlemefs32a1.y
 |-  Y = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) )
13 cdlemefs32a1.z
 |-  Z = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = Y ) )
14 1 fvexi
 |-  B e. _V
15 nfv
 |-  F/ t ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) )
16 nfra1
 |-  F/ t A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = Y )
17 nfcv
 |-  F/_ t B
18 16 17 nfriota
 |-  F/_ t ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = Y ) )
19 13 18 nfcxfr
 |-  F/_ t Z
20 19 nfel1
 |-  F/ t Z e. A
21 nfcv
 |-  F/_ t .<_
22 nfcv
 |-  F/_ t W
23 19 21 22 nfbr
 |-  F/ t Z .<_ W
24 23 nfn
 |-  F/ t -. Z .<_ W
25 20 24 nfan
 |-  F/ t ( Z e. A /\ -. Z .<_ W )
26 25 a1i
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> F/ t ( Z e. A /\ -. Z .<_ W ) )
27 13 a1i
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> Z = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = Y ) ) )
28 eleq1
 |-  ( Y = Z -> ( Y e. A <-> Z e. A ) )
29 breq1
 |-  ( Y = Z -> ( Y .<_ W <-> Z .<_ W ) )
30 29 notbid
 |-  ( Y = Z -> ( -. Y .<_ W <-> -. Z .<_ W ) )
31 28 30 anbi12d
 |-  ( Y = Z -> ( ( Y e. A /\ -. Y .<_ W ) <-> ( Z e. A /\ -. Z .<_ W ) ) )
32 31 adantl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ Y = Z ) -> ( ( Y e. A /\ -. Y .<_ W ) <-> ( Z e. A /\ -. Z .<_ W ) ) )
33 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
34 simpl2r
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> ( R e. A /\ -. R .<_ W ) )
35 simprl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> t e. A )
36 simprrl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> -. t .<_ W )
37 35 36 jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> ( t e. A /\ -. t .<_ W ) )
38 simpl2l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> P =/= Q )
39 simpl3
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> R .<_ ( P .\/ Q ) )
40 simprrr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> -. t .<_ ( P .\/ Q ) )
41 2 3 4 5 6 7 8 12 cdleme7ga
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. t .<_ ( P .\/ Q ) ) ) -> Y e. A )
42 2 3 4 5 6 7 8 12 cdleme7
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. t .<_ ( P .\/ Q ) ) ) -> -. Y .<_ W )
43 41 42 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. t .<_ ( P .\/ Q ) ) ) -> ( Y e. A /\ -. Y .<_ W ) )
44 33 34 37 38 39 40 43 syl123anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) -> ( Y e. A /\ -. Y .<_ W ) )
45 44 ex
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( ( t e. A /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) -> ( Y e. A /\ -. Y .<_ W ) ) )
46 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
47 simp2rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> R e. A )
48 simp2rr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> -. R .<_ W )
49 simp2l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> P =/= Q )
50 simp3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) )
51 1 2 3 4 5 6 7 8 12 13 cdleme25cl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> Z e. B )
52 46 47 48 49 50 51 syl122anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> Z e. B )
53 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) )
54 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) )
55 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) )
56 2 3 5 6 cdlemb2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> E. t e. A ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) )
57 53 54 55 49 56 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> E. t e. A ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) )
58 15 26 27 32 45 52 57 riotasv3d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) /\ B e. _V ) -> ( Z e. A /\ -. Z .<_ W ) )
59 14 58 mpan2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( Z e. A /\ -. Z .<_ W ) )
60 9 10 11 12 13 cdleme31sn1c
 |-  ( ( R e. A /\ R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = Z )
61 47 50 60 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = Z )
62 61 eleq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A <-> Z e. A ) )
63 61 breq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N .<_ W <-> Z .<_ W ) )
64 63 notbid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( -. [_ R / s ]_ N .<_ W <-> -. Z .<_ W ) )
65 62 64 anbi12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) <-> ( Z e. A /\ -. Z .<_ W ) ) )
66 59 65 mpbird
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )