Metamath Proof Explorer


Theorem cdleme3d

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
cdleme3.3 V=P˙R˙W
Assertion cdleme3d F=R˙U˙Q˙V

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 cdleme3.3 V=P˙R˙W
9 8 oveq2i Q˙V=Q˙P˙R˙W
10 9 oveq2i R˙U˙Q˙V=R˙U˙Q˙P˙R˙W
11 7 10 eqtr4i F=R˙U˙Q˙V