Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to
cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)
|
|
Ref |
Expression |
|
Hypotheses |
cdleme1.l |
|
|
|
cdleme1.j |
|
|
|
cdleme1.m |
|
|
|
cdleme1.a |
|
|
|
cdleme1.h |
|
|
|
cdleme1.u |
|
|
|
cdleme1.f |
|
|
|
cdleme3.3 |
|
|
Assertion |
cdleme3d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme1.l |
|
2 |
|
cdleme1.j |
|
3 |
|
cdleme1.m |
|
4 |
|
cdleme1.a |
|
5 |
|
cdleme1.h |
|
6 |
|
cdleme1.u |
|
7 |
|
cdleme1.f |
|
8 |
|
cdleme3.3 |
|
9 |
8
|
oveq2i |
|
10 |
9
|
oveq2i |
|
11 |
7 10
|
eqtr4i |
|