Metamath Proof Explorer


Theorem cdleme8tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. X represents t_1. In their notation, we prove p \/ t_1 = p \/ t. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme8t.l ˙=K
cdleme8t.j ˙=joinK
cdleme8t.m ˙=meetK
cdleme8t.a A=AtomsK
cdleme8t.h H=LHypK
cdleme8t.x X=P˙T˙W
Assertion cdleme8tN KHLWHPA¬P˙WTAP˙X=P˙T

Proof

Step Hyp Ref Expression
1 cdleme8t.l ˙=K
2 cdleme8t.j ˙=joinK
3 cdleme8t.m ˙=meetK
4 cdleme8t.a A=AtomsK
5 cdleme8t.h H=LHypK
6 cdleme8t.x X=P˙T˙W
7 1 2 3 4 5 6 cdleme8 KHLWHPA¬P˙WTAP˙X=P˙T