Metamath Proof Explorer


Theorem cdleme9a

Description: Part of proof of Lemma E in Crawley p. 113. C represents s_1, which we prove is an atom. (Contributed by NM, 10-Jun-2012)

Ref Expression
Hypotheses cdleme8.l ˙=K
cdleme8.j ˙=joinK
cdleme8.m ˙=meetK
cdleme8.a A=AtomsK
cdleme8.h H=LHypK
cdleme8.4 C=P˙S˙W
Assertion cdleme9a KHLWHPA¬P˙WSAPSCA

Proof

Step Hyp Ref Expression
1 cdleme8.l ˙=K
2 cdleme8.j ˙=joinK
3 cdleme8.m ˙=meetK
4 cdleme8.a A=AtomsK
5 cdleme8.h H=LHypK
6 cdleme8.4 C=P˙S˙W
7 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WSAPSCA