Metamath Proof Explorer


Theorem cdleme9b

Description: Utility lemma for Lemma E in Crawley p. 113. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses cdleme9b.b B=BaseK
cdleme9b.j ˙=joinK
cdleme9b.m ˙=meetK
cdleme9b.a A=AtomsK
cdleme9b.h H=LHypK
cdleme9b.c C=P˙S˙W
Assertion cdleme9b KHLPASAWHCB

Proof

Step Hyp Ref Expression
1 cdleme9b.b B=BaseK
2 cdleme9b.j ˙=joinK
3 cdleme9b.m ˙=meetK
4 cdleme9b.a A=AtomsK
5 cdleme9b.h H=LHypK
6 cdleme9b.c C=P˙S˙W
7 hllat KHLKLat
8 7 adantr KHLPASAWHKLat
9 1 2 4 hlatjcl KHLPASAP˙SB
10 9 3adant3r3 KHLPASAWHP˙SB
11 simpr3 KHLPASAWHWH
12 1 5 lhpbase WHWB
13 11 12 syl KHLPASAWHWB
14 1 3 latmcl KLatP˙SBWBP˙S˙WB
15 8 10 13 14 syl3anc KHLPASAWHP˙S˙WB
16 6 15 eqeltrid KHLPASAWHCB