Metamath Proof Explorer


Theorem cdleme9b

Description: Utility lemma for Lemma E in Crawley p. 113. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses cdleme9b.b
|- B = ( Base ` K )
cdleme9b.j
|- .\/ = ( join ` K )
cdleme9b.m
|- ./\ = ( meet ` K )
cdleme9b.a
|- A = ( Atoms ` K )
cdleme9b.h
|- H = ( LHyp ` K )
cdleme9b.c
|- C = ( ( P .\/ S ) ./\ W )
Assertion cdleme9b
|- ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> C e. B )

Proof

Step Hyp Ref Expression
1 cdleme9b.b
 |-  B = ( Base ` K )
2 cdleme9b.j
 |-  .\/ = ( join ` K )
3 cdleme9b.m
 |-  ./\ = ( meet ` K )
4 cdleme9b.a
 |-  A = ( Atoms ` K )
5 cdleme9b.h
 |-  H = ( LHyp ` K )
6 cdleme9b.c
 |-  C = ( ( P .\/ S ) ./\ W )
7 hllat
 |-  ( K e. HL -> K e. Lat )
8 7 adantr
 |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> K e. Lat )
9 1 2 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. B )
10 9 3adant3r3
 |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> ( P .\/ S ) e. B )
11 simpr3
 |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> W e. H )
12 1 5 lhpbase
 |-  ( W e. H -> W e. B )
13 11 12 syl
 |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> W e. B )
14 1 3 latmcl
 |-  ( ( K e. Lat /\ ( P .\/ S ) e. B /\ W e. B ) -> ( ( P .\/ S ) ./\ W ) e. B )
15 8 10 13 14 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> ( ( P .\/ S ) ./\ W ) e. B )
16 6 15 eqeltrid
 |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ W e. H ) ) -> C e. B )