Metamath Proof Explorer


Theorem cdlemefs45eN

Description: Explicit expansion of cdlemefs45 . TODO: use to shorten cdlemefs45 uses? TODO: FIX COMMENT. (Contributed by NM, 10-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemef45.b B=BaseK
cdlemef45.l ˙=K
cdlemef45.j ˙=joinK
cdlemef45.m ˙=meetK
cdlemef45.a A=AtomsK
cdlemef45.h H=LHypK
cdlemef45.u U=P˙Q˙W
cdlemef45.d D=t˙U˙Q˙P˙t˙W
cdlemef45.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemefs45.e E=P˙Q˙D˙s˙t˙W
Assertion cdlemefs45eN KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=P˙Q˙FS˙R˙S˙W

Proof

Step Hyp Ref Expression
1 cdlemef45.b B=BaseK
2 cdlemef45.l ˙=K
3 cdlemef45.j ˙=joinK
4 cdlemef45.m ˙=meetK
5 cdlemef45.a A=AtomsK
6 cdlemef45.h H=LHypK
7 cdlemef45.u U=P˙Q˙W
8 cdlemef45.d D=t˙U˙Q˙P˙t˙W
9 cdlemef45.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
10 cdlemefs45.e E=P˙Q˙D˙s˙t˙W
11 1 2 3 4 5 6 7 8 9 10 cdlemefs45ee KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
12 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHPA¬P˙WQA¬Q˙W
13 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPQ
14 simp23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA¬S˙W
15 simp3r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬S˙P˙Q
16 1 2 3 4 5 6 7 8 9 cdlemefr45e KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QFS=S˙U˙Q˙P˙S˙W
17 12 13 14 15 16 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFS=S˙U˙Q˙P˙S˙W
18 17 oveq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFS˙R˙S˙W=S˙U˙Q˙P˙S˙W˙R˙S˙W
19 18 oveq2d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QP˙Q˙FS˙R˙S˙W=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
20 11 19 eqtr4d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=P˙Q˙FS˙R˙S˙W