Metamath Proof Explorer


Theorem cdlemeg46gf

Description: TODO FIX COMMENT Eliminate antecedent R .<_ ( P .\/ Q ) . (Contributed by NM, 4-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b B=BaseK
cdlemef46g.l ˙=K
cdlemef46g.j ˙=joinK
cdlemef46g.m ˙=meetK
cdlemef46g.a A=AtomsK
cdlemef46g.h H=LHypK
cdlemef46g.u U=P˙Q˙W
cdlemef46g.d D=t˙U˙Q˙P˙t˙W
cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemef46.v V=Q˙P˙W
cdlemef46.n N=v˙V˙P˙Q˙v˙W
cdlemefs46.o O=Q˙P˙N˙u˙v˙W
cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
Assertion cdlemeg46gf KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WGFR=R

Proof

Step Hyp Ref Expression
1 cdlemef46g.b B=BaseK
2 cdlemef46g.l ˙=K
3 cdlemef46g.j ˙=joinK
4 cdlemef46g.m ˙=meetK
5 cdlemef46g.a A=AtomsK
6 cdlemef46g.h H=LHypK
7 cdlemef46g.u U=P˙Q˙W
8 cdlemef46g.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 cdlemef46.v V=Q˙P˙W
12 cdlemef46.n N=v˙V˙P˙Q˙v˙W
13 cdlemefs46.o O=Q˙P˙N˙u˙v˙W
14 cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46gfre KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QGFR=R
16 15 3expa KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QGFR=R
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46ngfr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QGFR=R
18 17 3expa KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QGFR=R
19 16 18 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WGFR=R