Metamath Proof Explorer


Theorem cdlemeg47rv

Description: Value of g_s(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO: FIX COMMENT. (Contributed by NM, 3-Apr-2013)

Ref Expression
Hypotheses cdlemef47.b B=BaseK
cdlemef47.l ˙=K
cdlemef47.j ˙=joinK
cdlemef47.m ˙=meetK
cdlemef47.a A=AtomsK
cdlemef47.h H=LHypK
cdlemef47.v V=Q˙P˙W
cdlemef47.n N=v˙V˙P˙Q˙v˙W
cdlemefs47.o O=Q˙P˙N˙u˙v˙W
cdlemef47.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
Assertion cdlemeg47rv KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGR=R/uS/vO

Proof

Step Hyp Ref Expression
1 cdlemef47.b B=BaseK
2 cdlemef47.l ˙=K
3 cdlemef47.j ˙=joinK
4 cdlemef47.m ˙=meetK
5 cdlemef47.a A=AtomsK
6 cdlemef47.h H=LHypK
7 cdlemef47.v V=Q˙P˙W
8 cdlemef47.n N=v˙V˙P˙Q˙v˙W
9 cdlemefs47.o O=Q˙P˙N˙u˙v˙W
10 cdlemef47.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
11 3 5 cdleme46f2g1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHQA¬Q˙WPA¬P˙WQPRA¬R˙WSA¬S˙WR˙Q˙P¬S˙Q˙P
12 1 2 3 4 5 6 7 8 10 9 cdlemefs45 KHLWHQA¬Q˙WPA¬P˙WQPRA¬R˙WSA¬S˙WR˙Q˙P¬S˙Q˙PGR=R/uS/vO
13 11 12 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGR=R/uS/vO