Metamath Proof Explorer


Theorem cdleme46f2g1

Description: Conversion for G to reuse F theorems. TODO FIX COMMENT. (Contributed by NM, 1-Apr-2013)

Ref Expression
Hypotheses cdleme46fg.j ˙=joinK
cdleme46fg.a A=AtomsK
Assertion cdleme46f2g1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHQA¬Q˙WPA¬P˙WQPRA¬R˙WSA¬S˙WR˙Q˙P¬S˙Q˙P

Proof

Step Hyp Ref Expression
1 cdleme46fg.j ˙=joinK
2 cdleme46fg.a A=AtomsK
3 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWH
4 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QQA¬Q˙W
5 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPA¬P˙W
6 3 4 5 3jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHQA¬Q˙WPA¬P˙W
7 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPQ
8 7 necomd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QQP
9 simp22 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA¬R˙W
10 simp23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA¬S˙W
11 8 9 10 3jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QQPRA¬R˙WSA¬S˙W
12 simpl1l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WKHL
13 simpl2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WPA
14 simpl3l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WQA
15 1 2 hlatjcom KHLPAQAP˙Q=Q˙P
16 12 13 14 15 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WP˙Q=Q˙P
17 16 breq2d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QR˙Q˙P
18 16 breq2d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WS˙P˙QS˙Q˙P
19 18 notbid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬S˙P˙Q¬S˙Q˙P
20 17 19 anbi12d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙Q˙P¬S˙Q˙P
21 20 biimp3a KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙Q˙P¬S˙Q˙P
22 6 11 21 3jca KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHQA¬Q˙WPA¬P˙WQPRA¬R˙WSA¬S˙WR˙Q˙P¬S˙Q˙P