Metamath Proof Explorer


Theorem cdlemesner

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdlemesner.l ˙=K
cdlemesner.j ˙=joinK
cdlemesner.a A=AtomsK
cdlemesner.h H=LHypK
Assertion cdlemesner KHLRASAR˙P˙Q¬S˙P˙QSR

Proof

Step Hyp Ref Expression
1 cdlemesner.l ˙=K
2 cdlemesner.j ˙=joinK
3 cdlemesner.a A=AtomsK
4 cdlemesner.h H=LHypK
5 nbrne2 R˙P˙Q¬S˙P˙QRS
6 5 3ad2ant3 KHLRASAR˙P˙Q¬S˙P˙QRS
7 6 necomd KHLRASAR˙P˙Q¬S˙P˙QSR