Metamath Proof Explorer


Theorem cdlemg17ir

Description: TODO: fix comment. (Contributed by NM, 13-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17ir K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P = F Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
9 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G T
10 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
11 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
12 1 2 3 4 5 6 7 cdlemg17b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q
13 8 9 10 11 12 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q
14 13 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P = F Q