Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemg17ir
Next ⟩
cdlemg17j
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdlemg17ir
Description:
TODO: fix comment.
(Contributed by
NM
, 13-May-2013)
Ref
Expression
Hypotheses
cdlemg12.l
⊢
≤
˙
=
≤
K
cdlemg12.j
⊢
∨
˙
=
join
⁡
K
cdlemg12.m
⊢
∧
˙
=
meet
⁡
K
cdlemg12.a
⊢
A
=
Atoms
⁡
K
cdlemg12.h
⊢
H
=
LHyp
⁡
K
cdlemg12.t
⊢
T
=
LTrn
⁡
K
⁡
W
cdlemg12b.r
⊢
R
=
trL
⁡
K
⁡
W
Assertion
cdlemg17ir
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
F
⁡
G
⁡
P
=
F
⁡
Q
Proof
Step
Hyp
Ref
Expression
1
cdlemg12.l
⊢
≤
˙
=
≤
K
2
cdlemg12.j
⊢
∨
˙
=
join
⁡
K
3
cdlemg12.m
⊢
∧
˙
=
meet
⁡
K
4
cdlemg12.a
⊢
A
=
Atoms
⁡
K
5
cdlemg12.h
⊢
H
=
LHyp
⁡
K
6
cdlemg12.t
⊢
T
=
LTrn
⁡
K
⁡
W
7
cdlemg12b.r
⊢
R
=
trL
⁡
K
⁡
W
8
simp1
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
9
simp22
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
G
∈
T
10
simp23
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
P
≠
Q
11
simp3
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
12
1
2
3
4
5
6
7
cdlemg17b
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
G
⁡
P
=
Q
13
8
9
10
11
12
syl121anc
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
G
⁡
P
=
Q
14
13
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
F
∈
T
∧
G
∈
T
∧
P
≠
Q
∧
G
⁡
P
≠
P
∧
R
⁡
G
≤
˙
P
∨
˙
Q
∧
¬
∃
r
∈
A
¬
r
≤
˙
W
∧
P
∨
˙
r
=
Q
∨
˙
r
→
F
⁡
G
⁡
P
=
F
⁡
Q