Metamath Proof Explorer


Theorem cdlemg17b

Description: Part of proof of Lemma G in Crawley p. 117, 4th line. Whenever (in their terminology) p \/ q/0 (i.e. the sublattice from 0 to p \/ q) contains precisely three atoms and g is not the identity, g(p) = q. See also comments under cdleme0nex . (Contributed by NM, 8-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P
9 8 neneqd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ G P = P
10 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
11 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
12 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
13 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
14 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G T
15 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r R G ˙ P ˙ Q
16 1 2 3 4 5 6 7 cdlemg17a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T R G ˙ P ˙ Q G P ˙ P ˙ Q
17 11 12 13 14 15 16 syl122anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P ˙ P ˙ Q
18 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
19 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A
20 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A
21 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
22 1 4 5 6 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
23 11 14 12 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P A ¬ G P ˙ W
24 1 2 4 cdleme0nex K HL G P ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A Q A P Q G P A ¬ G P ˙ W G P = P G P = Q
25 10 17 18 19 20 21 23 24 syl331anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = P G P = Q
26 25 ord K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ G P = P G P = Q
27 9 26 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q