Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
eqid |
|
9 |
|
simp1l |
|
10 |
9
|
hllatd |
|
11 |
|
simp1 |
|
12 |
|
simp3l |
|
13 |
|
simp2ll |
|
14 |
1 4 5 6
|
ltrnat |
|
15 |
11 12 13 14
|
syl3anc |
|
16 |
8 4
|
atbase |
|
17 |
15 16
|
syl |
|
18 |
8 2 4
|
hlatjcl |
|
19 |
9 13 15 18
|
syl3anc |
|
20 |
|
simp2rl |
|
21 |
8 2 4
|
hlatjcl |
|
22 |
9 13 20 21
|
syl3anc |
|
23 |
1 2 4
|
hlatlej2 |
|
24 |
9 13 15 23
|
syl3anc |
|
25 |
|
simp2l |
|
26 |
|
eqid |
|
27 |
1 2 3 4 5 26
|
cdleme0cp |
|
28 |
11 25 15 27
|
syl12anc |
|
29 |
1 2 4
|
hlatlej1 |
|
30 |
9 13 20 29
|
syl3anc |
|
31 |
1 2 3 4 5 6 7
|
trlval2 |
|
32 |
11 12 25 31
|
syl3anc |
|
33 |
|
simp3r |
|
34 |
32 33
|
eqbrtrrd |
|
35 |
8 4
|
atbase |
|
36 |
13 35
|
syl |
|
37 |
|
simp1r |
|
38 |
8 5
|
lhpbase |
|
39 |
37 38
|
syl |
|
40 |
8 3
|
latmcl |
|
41 |
10 19 39 40
|
syl3anc |
|
42 |
8 1 2
|
latjle12 |
|
43 |
10 36 41 22 42
|
syl13anc |
|
44 |
30 34 43
|
mpbi2and |
|
45 |
28 44
|
eqbrtrrd |
|
46 |
8 1 10 17 19 22 24 45
|
lattrd |
|