| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
eqid |
|
| 9 |
|
simp1l |
|
| 10 |
9
|
hllatd |
|
| 11 |
|
simp1 |
|
| 12 |
|
simp3l |
|
| 13 |
|
simp2ll |
|
| 14 |
1 4 5 6
|
ltrnat |
|
| 15 |
11 12 13 14
|
syl3anc |
|
| 16 |
8 4
|
atbase |
|
| 17 |
15 16
|
syl |
|
| 18 |
8 2 4
|
hlatjcl |
|
| 19 |
9 13 15 18
|
syl3anc |
|
| 20 |
|
simp2rl |
|
| 21 |
8 2 4
|
hlatjcl |
|
| 22 |
9 13 20 21
|
syl3anc |
|
| 23 |
1 2 4
|
hlatlej2 |
|
| 24 |
9 13 15 23
|
syl3anc |
|
| 25 |
|
simp2l |
|
| 26 |
|
eqid |
|
| 27 |
1 2 3 4 5 26
|
cdleme0cp |
|
| 28 |
11 25 15 27
|
syl12anc |
|
| 29 |
1 2 4
|
hlatlej1 |
|
| 30 |
9 13 20 29
|
syl3anc |
|
| 31 |
1 2 3 4 5 6 7
|
trlval2 |
|
| 32 |
11 12 25 31
|
syl3anc |
|
| 33 |
|
simp3r |
|
| 34 |
32 33
|
eqbrtrrd |
|
| 35 |
8 4
|
atbase |
|
| 36 |
13 35
|
syl |
|
| 37 |
|
simp1r |
|
| 38 |
8 5
|
lhpbase |
|
| 39 |
37 38
|
syl |
|
| 40 |
8 3
|
latmcl |
|
| 41 |
10 19 39 40
|
syl3anc |
|
| 42 |
8 1 2
|
latjle12 |
|
| 43 |
10 36 41 22 42
|
syl13anc |
|
| 44 |
30 34 43
|
mpbi2and |
|
| 45 |
28 44
|
eqbrtrrd |
|
| 46 |
8 1 10 17 19 22 24 45
|
lattrd |
|