Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
10 |
9
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
11 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐺 ∈ 𝑇 ) |
13 |
|
simp2ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
14 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
16 |
8 4
|
atbase |
⊢ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 → ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
8 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
9 13 15 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
|
simp2rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
21 |
8 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
9 13 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
24 |
9 13 15 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
25 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
26 |
|
eqid |
⊢ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) |
27 |
1 2 3 4 5 26
|
cdleme0cp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
28 |
11 25 15 27
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ) |
29 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
30 |
9 13 20 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
31 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
32 |
11 12 25 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
33 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
34 |
32 33
|
eqbrtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
35 |
8 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
36 |
13 35
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
37 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
38 |
8 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
40 |
8 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
41 |
10 19 39 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
8 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
43 |
10 36 41 22 42
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
44 |
30 34 43
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
45 |
28 44
|
eqbrtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
46 |
8 1 10 17 19 22 24 45
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑃 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |