Metamath Proof Explorer


Theorem cdlemg17dN

Description: TODO: fix comment. (Contributed by NM, 9-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17dN K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P R G = P ˙ Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp1 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P K HL W H G T
9 simp21 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P P A ¬ P ˙ W
10 simpl1 K HL W H G T P A ¬ P ˙ W K HL
11 simpl2 K HL W H G T P A ¬ P ˙ W W H
12 simpl3 K HL W H G T P A ¬ P ˙ W G T
13 simpr K HL W H G T P A ¬ P ˙ W P A ¬ P ˙ W
14 1 2 3 4 5 6 7 trlval2 K HL W H G T P A ¬ P ˙ W R G = P ˙ G P ˙ W
15 10 11 12 13 14 syl211anc K HL W H G T P A ¬ P ˙ W R G = P ˙ G P ˙ W
16 8 9 15 syl2anc K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P R G = P ˙ G P ˙ W
17 simp11 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P K HL
18 simp12 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P W H
19 17 18 jca K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P K HL W H
20 simp22 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P Q A ¬ Q ˙ W
21 simp13 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P G T
22 simp23 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P P Q
23 simp33 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P G P P
24 simp31 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P R G ˙ P ˙ Q
25 simp32 K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
26 1 2 3 4 5 6 7 cdlemg17b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q
27 19 9 20 21 22 23 24 25 26 syl323anc K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P G P = Q
28 27 oveq2d K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P P ˙ G P = P ˙ Q
29 28 oveq1d K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P P ˙ G P ˙ W = P ˙ Q ˙ W
30 16 29 eqtrd K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P R G = P ˙ Q ˙ W