Metamath Proof Explorer


Theorem cdlemg17dN

Description: TODO: fix comment. (Contributed by NM, 9-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17dN KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPRG=P˙Q˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp1 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPKHLWHGT
9 simp21 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPPA¬P˙W
10 simpl1 KHLWHGTPA¬P˙WKHL
11 simpl2 KHLWHGTPA¬P˙WWH
12 simpl3 KHLWHGTPA¬P˙WGT
13 simpr KHLWHGTPA¬P˙WPA¬P˙W
14 1 2 3 4 5 6 7 trlval2 KHLWHGTPA¬P˙WRG=P˙GP˙W
15 10 11 12 13 14 syl211anc KHLWHGTPA¬P˙WRG=P˙GP˙W
16 8 9 15 syl2anc KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPRG=P˙GP˙W
17 simp11 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPKHL
18 simp12 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPWH
19 17 18 jca KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPKHLWH
20 simp22 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPQA¬Q˙W
21 simp13 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPGT
22 simp23 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPPQ
23 simp33 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPGPP
24 simp31 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPRG˙P˙Q
25 simp32 KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPP¬rA¬r˙WP˙r=Q˙r
26 1 2 3 4 5 6 7 cdlemg17b KHLWHPA¬P˙WQA¬Q˙WGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGP=Q
27 19 9 20 21 22 23 24 25 26 syl323anc KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPGP=Q
28 27 oveq2d KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPP˙GP=P˙Q
29 28 oveq1d KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPP˙GP˙W=P˙Q˙W
30 16 29 eqtrd KHLWHGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPRG=P˙Q˙W