Metamath Proof Explorer


Theorem cdlemg17dALTN

Description: Same as cdlemg17dN with fewer antecedents but longer proof TODO: fix comment. (Contributed by NM, 9-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17dALTN K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G = P ˙ Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp3l K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G ˙ P ˙ Q
9 simp11 K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P K HL
10 simp12 K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P W H
11 simp13 K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P G T
12 1 5 6 7 trlle K HL W H G T R G ˙ W
13 9 10 11 12 syl21anc K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G ˙ W
14 9 hllatd K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P K Lat
15 eqid Base K = Base K
16 15 5 6 7 trlcl K HL W H G T R G Base K
17 9 10 11 16 syl21anc K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G Base K
18 simp21l K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P P A
19 simp22 K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P Q A
20 15 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
21 9 18 19 20 syl3anc K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P P ˙ Q Base K
22 15 5 lhpbase W H W Base K
23 10 22 syl K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P W Base K
24 15 1 3 latlem12 K Lat R G Base K P ˙ Q Base K W Base K R G ˙ P ˙ Q R G ˙ W R G ˙ P ˙ Q ˙ W
25 14 17 21 23 24 syl13anc K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G ˙ P ˙ Q R G ˙ W R G ˙ P ˙ Q ˙ W
26 8 13 25 mpbi2and K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G ˙ P ˙ Q ˙ W
27 hlatl K HL K AtLat
28 9 27 syl K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P K AtLat
29 simp21 K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P P A ¬ P ˙ W
30 simp3r K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P G P P
31 1 4 5 6 7 trlat K HL W H P A ¬ P ˙ W G T G P P R G A
32 9 10 29 11 30 31 syl212anc K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G A
33 simp23 K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P P Q
34 1 2 3 4 5 lhpat K HL W H P A ¬ P ˙ W Q A P Q P ˙ Q ˙ W A
35 9 10 29 19 33 34 syl212anc K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P P ˙ Q ˙ W A
36 1 4 atcmp K AtLat R G A P ˙ Q ˙ W A R G ˙ P ˙ Q ˙ W R G = P ˙ Q ˙ W
37 28 32 35 36 syl3anc K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G ˙ P ˙ Q ˙ W R G = P ˙ Q ˙ W
38 26 37 mpbid K HL W H G T P A ¬ P ˙ W Q A P Q R G ˙ P ˙ Q G P P R G = P ˙ Q ˙ W