Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp11 |
|
9 |
|
simp12 |
|
10 |
|
simp13 |
|
11 |
|
simp21 |
|
12 |
|
eqid |
|
13 |
5 6 1 2 4 3 12
|
cdlemg2k |
|
14 |
8 9 10 11 13
|
syl121anc |
|
15 |
|
simp22 |
|
16 |
1 2 3 4 5 6 7
|
trlval2 |
|
17 |
8 15 9 16
|
syl3anc |
|
18 |
|
simp1 |
|
19 |
|
simp23 |
|
20 |
|
simp31 |
|
21 |
|
simp32 |
|
22 |
|
simp33 |
|
23 |
1 2 3 4 5 6 7
|
cdlemg17b |
|
24 |
18 15 19 20 21 22 23
|
syl123anc |
|
25 |
24
|
oveq2d |
|
26 |
25
|
oveq1d |
|
27 |
17 26
|
eqtrd |
|
28 |
27
|
oveq2d |
|
29 |
14 28
|
eqtr4d |
|