| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp3l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 9 |  | simp11 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐾  ∈  HL ) | 
						
							| 10 |  | simp12 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 11 |  | simp13 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 12 | 1 5 6 7 | trlle | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 ) | 
						
							| 13 | 9 10 11 12 | syl21anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 ) | 
						
							| 14 | 9 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐾  ∈  Lat ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 16 | 15 5 6 7 | trlcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 17 | 9 10 11 16 | syl21anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 |  | simp21l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 19 |  | simp22 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 20 | 15 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 21 | 9 18 19 20 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 22 | 15 5 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 23 | 10 22 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 24 | 15 1 3 | latlem12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 )  ↔  ( 𝑅 ‘ 𝐺 )  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 25 | 14 17 21 23 24 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 )  ↔  ( 𝑅 ‘ 𝐺 )  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 26 | 8 13 25 | mpbi2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐺 )  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) | 
						
							| 27 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 28 | 9 27 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐾  ∈  AtLat ) | 
						
							| 29 |  | simp21 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 30 |  | simp3r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) | 
						
							| 31 | 1 4 5 6 7 | trlat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝐺  ∈  𝑇  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐺 )  ∈  𝐴 ) | 
						
							| 32 | 9 10 29 11 30 31 | syl212anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐺 )  ∈  𝐴 ) | 
						
							| 33 |  | simp23 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 34 | 1 2 3 4 5 | lhpat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 ) | 
						
							| 35 | 9 10 29 19 33 34 | syl212anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 ) | 
						
							| 36 | 1 4 | atcmp | ⊢ ( ( 𝐾  ∈  AtLat  ∧  ( 𝑅 ‘ 𝐺 )  ∈  𝐴  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 )  →  ( ( 𝑅 ‘ 𝐺 )  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ↔  ( 𝑅 ‘ 𝐺 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 37 | 28 32 35 36 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑅 ‘ 𝐺 )  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ↔  ( 𝑅 ‘ 𝐺 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 38 | 26 37 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐺  ∈  𝑇 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐺 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) |