Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme0nex.l |
|
2 |
|
cdleme0nex.j |
|
3 |
|
cdleme0nex.a |
|
4 |
|
simp3r |
|
5 |
|
simp12 |
|
6 |
4 5
|
jca |
|
7 |
|
simp3l |
|
8 |
|
simp13 |
|
9 |
|
ralnex |
|
10 |
8 9
|
sylibr |
|
11 |
|
breq1 |
|
12 |
11
|
notbid |
|
13 |
|
oveq2 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
12 15
|
anbi12d |
|
17 |
16
|
notbid |
|
18 |
17
|
rspcva |
|
19 |
7 10 18
|
syl2anc |
|
20 |
|
simp11 |
|
21 |
|
hlcvl |
|
22 |
20 21
|
syl |
|
23 |
|
simp21 |
|
24 |
|
simp22 |
|
25 |
|
simp23 |
|
26 |
3 1 2
|
cvlsupr2 |
|
27 |
22 23 24 7 25 26
|
syl131anc |
|
28 |
27
|
anbi2d |
|
29 |
19 28
|
mtbid |
|
30 |
|
ianor |
|
31 |
|
df-3an |
|
32 |
31
|
anbi2i |
|
33 |
|
an12 |
|
34 |
32 33
|
bitri |
|
35 |
34
|
notbii |
|
36 |
|
pm4.62 |
|
37 |
30 35 36
|
3bitr4ri |
|
38 |
29 37
|
sylibr |
|
39 |
6 38
|
mt2d |
|
40 |
|
neanior |
|
41 |
40
|
con2bii |
|
42 |
39 41
|
sylibr |
|