Metamath Proof Explorer


Theorem cdleme0nex

Description: Part of proof of Lemma E in Crawley p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p \/ q/0 (i.e. the sublattice from 0 to p \/ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a - which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012)

Ref Expression
Hypotheses cdleme0nex.l ˙=K
cdleme0nex.j ˙=joinK
cdleme0nex.a A=AtomsK
Assertion cdleme0nex KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WR=PR=Q

Proof

Step Hyp Ref Expression
1 cdleme0nex.l ˙=K
2 cdleme0nex.j ˙=joinK
3 cdleme0nex.a A=AtomsK
4 simp3r KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙W¬R˙W
5 simp12 KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WR˙P˙Q
6 4 5 jca KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙W¬R˙WR˙P˙Q
7 simp3l KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WRA
8 simp13 KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙W¬rA¬r˙WP˙r=Q˙r
9 ralnex rA¬¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
10 8 9 sylibr KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WrA¬¬r˙WP˙r=Q˙r
11 breq1 r=Rr˙WR˙W
12 11 notbid r=R¬r˙W¬R˙W
13 oveq2 r=RP˙r=P˙R
14 oveq2 r=RQ˙r=Q˙R
15 13 14 eqeq12d r=RP˙r=Q˙rP˙R=Q˙R
16 12 15 anbi12d r=R¬r˙WP˙r=Q˙r¬R˙WP˙R=Q˙R
17 16 notbid r=R¬¬r˙WP˙r=Q˙r¬¬R˙WP˙R=Q˙R
18 17 rspcva RArA¬¬r˙WP˙r=Q˙r¬¬R˙WP˙R=Q˙R
19 7 10 18 syl2anc KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙W¬¬R˙WP˙R=Q˙R
20 simp11 KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WKHL
21 hlcvl KHLKCvLat
22 20 21 syl KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WKCvLat
23 simp21 KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WPA
24 simp22 KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WQA
25 simp23 KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WPQ
26 3 1 2 cvlsupr2 KCvLatPAQARAPQP˙R=Q˙RRPRQR˙P˙Q
27 22 23 24 7 25 26 syl131anc KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WP˙R=Q˙RRPRQR˙P˙Q
28 27 anbi2d KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙W¬R˙WP˙R=Q˙R¬R˙WRPRQR˙P˙Q
29 19 28 mtbid KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙W¬¬R˙WRPRQR˙P˙Q
30 ianor ¬RPRQ¬R˙WR˙P˙Q¬RPRQ¬¬R˙WR˙P˙Q
31 df-3an RPRQR˙P˙QRPRQR˙P˙Q
32 31 anbi2i ¬R˙WRPRQR˙P˙Q¬R˙WRPRQR˙P˙Q
33 an12 ¬R˙WRPRQR˙P˙QRPRQ¬R˙WR˙P˙Q
34 32 33 bitri ¬R˙WRPRQR˙P˙QRPRQ¬R˙WR˙P˙Q
35 34 notbii ¬¬R˙WRPRQR˙P˙Q¬RPRQ¬R˙WR˙P˙Q
36 pm4.62 RPRQ¬¬R˙WR˙P˙Q¬RPRQ¬¬R˙WR˙P˙Q
37 30 35 36 3bitr4ri RPRQ¬¬R˙WR˙P˙Q¬¬R˙WRPRQR˙P˙Q
38 29 37 sylibr KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WRPRQ¬¬R˙WR˙P˙Q
39 6 38 mt2d KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙W¬RPRQ
40 neanior RPRQ¬R=PR=Q
41 40 con2bii R=PR=Q¬RPRQ
42 39 41 sylibr KHLR˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQRA¬R˙WR=PR=Q