Description: Part of proof of Lemma E in Crawley p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p \/ q/0 (i.e. the sublattice from 0 to p \/ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a - which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme0nex.l | |
|
cdleme0nex.j | |
||
cdleme0nex.a | |
||
Assertion | cdleme0nex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0nex.l | |
|
2 | cdleme0nex.j | |
|
3 | cdleme0nex.a | |
|
4 | simp3r | |
|
5 | simp12 | |
|
6 | 4 5 | jca | |
7 | simp3l | |
|
8 | simp13 | |
|
9 | ralnex | |
|
10 | 8 9 | sylibr | |
11 | breq1 | |
|
12 | 11 | notbid | |
13 | oveq2 | |
|
14 | oveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 12 15 | anbi12d | |
17 | 16 | notbid | |
18 | 17 | rspcva | |
19 | 7 10 18 | syl2anc | |
20 | simp11 | |
|
21 | hlcvl | |
|
22 | 20 21 | syl | |
23 | simp21 | |
|
24 | simp22 | |
|
25 | simp23 | |
|
26 | 3 1 2 | cvlsupr2 | |
27 | 22 23 24 7 25 26 | syl131anc | |
28 | 27 | anbi2d | |
29 | 19 28 | mtbid | |
30 | ianor | |
|
31 | df-3an | |
|
32 | 31 | anbi2i | |
33 | an12 | |
|
34 | 32 33 | bitri | |
35 | 34 | notbii | |
36 | pm4.62 | |
|
37 | 30 35 36 | 3bitr4ri | |
38 | 29 37 | sylibr | |
39 | 6 38 | mt2d | |
40 | neanior | |
|
41 | 40 | con2bii | |
42 | 39 41 | sylibr | |