Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme0nex.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme0nex.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme0nex.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ¬ 𝑅 ≤ 𝑊 ) |
5 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
6 |
4 5
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
7 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝑅 ∈ 𝐴 ) |
8 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
9 |
|
ralnex |
⊢ ( ∀ 𝑟 ∈ 𝐴 ¬ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ↔ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ∀ 𝑟 ∈ 𝐴 ¬ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
11 |
|
breq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊 ) ) |
12 |
11
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑟 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑃 ∨ 𝑟 ) = ( 𝑃 ∨ 𝑅 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑅 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
16 |
12 15
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ↔ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) ) |
17 |
16
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ↔ ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) ) |
18 |
17
|
rspcva |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ ∀ 𝑟 ∈ 𝐴 ¬ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) → ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
19 |
7 10 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
20 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
21 |
|
hlcvl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CvLat ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝐾 ∈ CvLat ) |
23 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
24 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
25 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝑃 ≠ 𝑄 ) |
26 |
3 1 2
|
cvlsupr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
27 |
22 23 24 7 25 26
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
28 |
27
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ↔ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
29 |
19 28
|
mtbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
30 |
|
ianor |
⊢ ( ¬ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∧ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( ¬ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∨ ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
31 |
|
df-3an |
⊢ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
32 |
31
|
anbi2i |
⊢ ( ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( ¬ 𝑅 ≤ 𝑊 ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
33 |
|
an12 |
⊢ ( ( ¬ 𝑅 ≤ 𝑊 ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∧ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
34 |
32 33
|
bitri |
⊢ ( ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∧ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
35 |
34
|
notbii |
⊢ ( ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ¬ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∧ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
36 |
|
pm4.62 |
⊢ ( ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) → ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ( ¬ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ∨ ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
37 |
30 35 36
|
3bitr4ri |
⊢ ( ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) → ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ↔ ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
38 |
29 37
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) → ¬ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
39 |
6 38
|
mt2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ¬ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) |
40 |
|
neanior |
⊢ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ↔ ¬ ( 𝑅 = 𝑃 ∨ 𝑅 = 𝑄 ) ) |
41 |
40
|
con2bii |
⊢ ( ( 𝑅 = 𝑃 ∨ 𝑅 = 𝑄 ) ↔ ¬ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) |
42 |
39 41
|
sylibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑅 = 𝑃 ∨ 𝑅 = 𝑄 ) ) |