Metamath Proof Explorer


Theorem cdleme0nex

Description: Part of proof of Lemma E in Crawley p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p \/ q/0 (i.e. the sublattice from 0 to p \/ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a - which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012)

Ref Expression
Hypotheses cdleme0nex.l = ( le ‘ 𝐾 )
cdleme0nex.j = ( join ‘ 𝐾 )
cdleme0nex.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cdleme0nex ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑅 = 𝑃𝑅 = 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdleme0nex.l = ( le ‘ 𝐾 )
2 cdleme0nex.j = ( join ‘ 𝐾 )
3 cdleme0nex.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ¬ 𝑅 𝑊 )
5 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝑅 ( 𝑃 𝑄 ) )
6 4 5 jca ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) )
7 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝑅𝐴 )
8 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
9 ralnex ( ∀ 𝑟𝐴 ¬ ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ↔ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
10 8 9 sylibr ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ∀ 𝑟𝐴 ¬ ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
11 breq1 ( 𝑟 = 𝑅 → ( 𝑟 𝑊𝑅 𝑊 ) )
12 11 notbid ( 𝑟 = 𝑅 → ( ¬ 𝑟 𝑊 ↔ ¬ 𝑅 𝑊 ) )
13 oveq2 ( 𝑟 = 𝑅 → ( 𝑃 𝑟 ) = ( 𝑃 𝑅 ) )
14 oveq2 ( 𝑟 = 𝑅 → ( 𝑄 𝑟 ) = ( 𝑄 𝑅 ) )
15 13 14 eqeq12d ( 𝑟 = 𝑅 → ( ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ↔ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) )
16 12 15 anbi12d ( 𝑟 = 𝑅 → ( ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ↔ ( ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) )
17 16 notbid ( 𝑟 = 𝑅 → ( ¬ ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ↔ ¬ ( ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) )
18 17 rspcva ( ( 𝑅𝐴 ∧ ∀ 𝑟𝐴 ¬ ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) → ¬ ( ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) )
19 7 10 18 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ¬ ( ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) )
20 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐾 ∈ HL )
21 hlcvl ( 𝐾 ∈ HL → 𝐾 ∈ CvLat )
22 20 21 syl ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐾 ∈ CvLat )
23 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝑃𝐴 )
24 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝑄𝐴 )
25 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝑃𝑄 )
26 3 1 2 cvlsupr2 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ↔ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) )
27 22 23 24 7 25 26 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ↔ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) )
28 27 anbi2d ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ↔ ( ¬ 𝑅 𝑊 ∧ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) ) )
29 19 28 mtbid ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ¬ ( ¬ 𝑅 𝑊 ∧ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) )
30 ianor ( ¬ ( ( 𝑅𝑃𝑅𝑄 ) ∧ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) ↔ ( ¬ ( 𝑅𝑃𝑅𝑄 ) ∨ ¬ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) )
31 df-3an ( ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ↔ ( ( 𝑅𝑃𝑅𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) )
32 31 anbi2i ( ( ¬ 𝑅 𝑊 ∧ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) ↔ ( ¬ 𝑅 𝑊 ∧ ( ( 𝑅𝑃𝑅𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) )
33 an12 ( ( ¬ 𝑅 𝑊 ∧ ( ( 𝑅𝑃𝑅𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ↔ ( ( 𝑅𝑃𝑅𝑄 ) ∧ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) )
34 32 33 bitri ( ( ¬ 𝑅 𝑊 ∧ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) ↔ ( ( 𝑅𝑃𝑅𝑄 ) ∧ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) )
35 34 notbii ( ¬ ( ¬ 𝑅 𝑊 ∧ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) ↔ ¬ ( ( 𝑅𝑃𝑅𝑄 ) ∧ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) )
36 pm4.62 ( ( ( 𝑅𝑃𝑅𝑄 ) → ¬ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) ↔ ( ¬ ( 𝑅𝑃𝑅𝑄 ) ∨ ¬ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) )
37 30 35 36 3bitr4ri ( ( ( 𝑅𝑃𝑅𝑄 ) → ¬ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) ↔ ¬ ( ¬ 𝑅 𝑊 ∧ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) )
38 29 37 sylibr ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( 𝑅𝑃𝑅𝑄 ) → ¬ ( ¬ 𝑅 𝑊𝑅 ( 𝑃 𝑄 ) ) ) )
39 6 38 mt2d ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ¬ ( 𝑅𝑃𝑅𝑄 ) )
40 neanior ( ( 𝑅𝑃𝑅𝑄 ) ↔ ¬ ( 𝑅 = 𝑃𝑅 = 𝑄 ) )
41 40 con2bii ( ( 𝑅 = 𝑃𝑅 = 𝑄 ) ↔ ¬ ( 𝑅𝑃𝑅𝑄 ) )
42 39 41 sylibr ( ( ( 𝐾 ∈ HL ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑅 = 𝑃𝑅 = 𝑄 ) )