Metamath Proof Explorer
Description: cdlemg16zz restated for easier studying. TODO: Discard this after
everything is figured out. (Contributed by NM, 26-May-2013)
|
|
Ref |
Expression |
|
Hypotheses |
cdlemg12.l |
|
|
|
cdlemg12.j |
|
|
|
cdlemg12.m |
|
|
|
cdlemg12.a |
|
|
|
cdlemg12.h |
|
|
|
cdlemg12.t |
|
|
|
cdlemg12b.r |
|
|
Assertion |
cdlemg26zz |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
1 2 3 4 5 6 7
|
cdlemg25zz |
|