Metamath Proof Explorer


Theorem cdlemg26zz

Description: cdlemg16zz restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg26zz KHLWHQA¬Q˙WzA¬z˙WFTGT¬RF˙Q˙z¬RG˙Q˙zQ˙FGQ˙W=z˙FGz˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 1 2 3 4 5 6 7 cdlemg25zz KHLWHQA¬Q˙WzA¬z˙WFTGT¬RF˙Q˙z¬RG˙Q˙zQ˙FGQ˙W=z˙FGz˙W