Metamath Proof Explorer


Theorem cdlemk5

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 25-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
Assertion cdlemk5 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ N P ˙ G P ˙ R G F -1 ˙ X P ˙ R X F -1

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 simp11l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL
10 simp11r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F W H
11 simp12 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F F T
12 simp21l K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F N T
13 simp23 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R F = R N
14 simp22 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F P A ¬ P ˙ W
15 1 2 3 4 5 6 7 cdlemk1 K HL W H F T N T R F = R N P A ¬ P ˙ W P ˙ N P = F P ˙ R F
16 9 10 11 12 13 14 15 syl222anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ N P = F P ˙ R F
17 simp13 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F G T
18 1 2 3 4 5 6 7 cdlemk2 K HL W H F T G T P A ¬ P ˙ W G P ˙ R G F -1 = F P ˙ R G F -1
19 9 10 11 17 14 18 syl221anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F G P ˙ R G F -1 = F P ˙ R G F -1
20 16 19 oveq12d K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ N P ˙ G P ˙ R G F -1 = F P ˙ R F ˙ F P ˙ R G F -1
21 simp21r K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F X T
22 simp33 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F R G R F
23 simp31 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F F I B
24 simp32 K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F G I B
25 23 24 jca K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F F I B G I B
26 1 2 3 4 5 6 7 8 cdlemk5a K HL W H F T G T X T R G R F F I B G I B P A ¬ P ˙ W F P ˙ R F ˙ F P ˙ R G F -1 ˙ X P ˙ R X F -1
27 9 10 11 17 21 22 25 14 26 syl233anc K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F F P ˙ R F ˙ F P ˙ R G F -1 ˙ X P ˙ R X F -1
28 20 27 eqbrtrd K HL W H F T G T N T X T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ N P ˙ G P ˙ R G F -1 ˙ X P ˙ R X F -1