Metamath Proof Explorer


Theorem cdlemk5

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 25-Jun-2013)

Ref Expression
Hypotheses cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk.l = ( le ‘ 𝐾 )
cdlemk.j = ( join ‘ 𝐾 )
cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.m = ( meet ‘ 𝐾 )
Assertion cdlemk5 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑃 ( 𝑁𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk.l = ( le ‘ 𝐾 )
3 cdlemk.j = ( join ‘ 𝐾 )
4 cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk.m = ( meet ‘ 𝐾 )
9 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐾 ∈ HL )
10 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑊𝐻 )
11 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐹𝑇 )
12 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑁𝑇 )
13 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝑁 ) )
14 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 1 2 3 4 5 6 7 cdlemk1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ) ∧ ( ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( 𝑃 ( 𝑁𝑃 ) ) = ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) )
16 9 10 11 12 13 14 15 syl222anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑁𝑃 ) ) = ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) )
17 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐺𝑇 )
18 1 2 3 4 5 6 7 cdlemk2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) = ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
19 9 10 11 17 14 18 syl221anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) = ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
20 16 19 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑃 ( 𝑁𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) = ( ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) )
21 simp21r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑋𝑇 )
22 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) )
23 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) )
24 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) )
25 23 24 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) )
26 1 2 3 4 5 6 7 8 cdlemk5a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )
27 9 10 11 17 21 22 25 14 26 syl233anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )
28 20 27 eqbrtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑁𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑃 ( 𝑁𝑃 ) ) ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )