| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdlemk.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdlemk.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdlemk.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdlemk.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdlemk.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
cdlemk.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
| 10 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
| 11 |
5 6
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ◡ 𝐹 ∈ 𝑇 ) |
| 13 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 14 |
8 9 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 15 |
2 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 16 |
15
|
3adant2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 17 |
2 3 4 5 6 7
|
trljat3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 18 |
8 14 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 19 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
| 20 |
2 4 5 6
|
ltrncoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 21 |
8 14 10 19 20
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 22 |
|
coass |
⊢ ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) |
| 23 |
1 5 6
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 24 |
8 10 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 25 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
| 27 |
26
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( 𝐺 ∘ ( I ↾ 𝐵 ) ) ) |
| 28 |
1 5 6
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
| 29 |
8 9 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
| 30 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → 𝐺 : 𝐵 ⟶ 𝐵 ) |
| 31 |
|
fcoi1 |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐵 → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 ) |
| 32 |
29 30 31
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 ) |
| 33 |
27 32
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐺 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = 𝐺 ) |
| 34 |
22 33
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) = 𝐺 ) |
| 35 |
34
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
| 36 |
21 35
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) = ( 𝐺 ‘ 𝑃 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 38 |
18 37
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |