Metamath Proof Explorer


Theorem cdlemk2

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 22-Jun-2013)

Ref Expression
Hypotheses cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk.l = ( le ‘ 𝐾 )
cdlemk.j = ( join ‘ 𝐾 )
cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemk2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) = ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk.l = ( le ‘ 𝐾 )
3 cdlemk.j = ( join ‘ 𝐾 )
4 cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐺𝑇 )
10 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹𝑇 )
11 5 6 ltrncnv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹𝑇 )
12 8 10 11 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹𝑇 )
13 5 6 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 𝐹𝑇 ) → ( 𝐺 𝐹 ) ∈ 𝑇 )
14 8 9 12 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐺 𝐹 ) ∈ 𝑇 )
15 2 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
16 15 3adant2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
17 2 3 4 5 6 7 trljat3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺 𝐹 ) ∈ 𝑇 ∧ ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) ) → ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) = ( ( ( 𝐺 𝐹 ) ‘ ( 𝐹𝑃 ) ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
18 8 14 16 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) = ( ( ( 𝐺 𝐹 ) ‘ ( 𝐹𝑃 ) ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
19 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑃𝐴 )
20 2 4 5 6 ltrncoval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐺 𝐹 ) ∈ 𝑇𝐹𝑇 ) ∧ 𝑃𝐴 ) → ( ( ( 𝐺 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝐺 𝐹 ) ‘ ( 𝐹𝑃 ) ) )
21 8 14 10 19 20 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( ( 𝐺 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝐺 𝐹 ) ‘ ( 𝐹𝑃 ) ) )
22 coass ( ( 𝐺 𝐹 ) ∘ 𝐹 ) = ( 𝐺 ∘ ( 𝐹𝐹 ) )
23 1 5 6 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : 𝐵1-1-onto𝐵 )
24 8 10 23 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹 : 𝐵1-1-onto𝐵 )
25 f1ococnv1 ( 𝐹 : 𝐵1-1-onto𝐵 → ( 𝐹𝐹 ) = ( I ↾ 𝐵 ) )
26 24 25 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹𝐹 ) = ( I ↾ 𝐵 ) )
27 26 coeq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐺 ∘ ( 𝐹𝐹 ) ) = ( 𝐺 ∘ ( I ↾ 𝐵 ) ) )
28 1 5 6 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) → 𝐺 : 𝐵1-1-onto𝐵 )
29 8 9 28 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐺 : 𝐵1-1-onto𝐵 )
30 f1of ( 𝐺 : 𝐵1-1-onto𝐵𝐺 : 𝐵𝐵 )
31 fcoi1 ( 𝐺 : 𝐵𝐵 → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 )
32 29 30 31 3syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 )
33 27 32 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐺 ∘ ( 𝐹𝐹 ) ) = 𝐺 )
34 22 33 syl5eq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺 𝐹 ) ∘ 𝐹 ) = 𝐺 )
35 34 fveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( ( 𝐺 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺𝑃 ) )
36 21 35 eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺 𝐹 ) ‘ ( 𝐹𝑃 ) ) = ( 𝐺𝑃 ) )
37 36 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( ( 𝐺 𝐹 ) ‘ ( 𝐹𝑃 ) ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) = ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
38 18 37 eqtr2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) = ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )