| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trljat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
trljat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
trljat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
trljat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 5 |
|
trljat.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
trljat.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
1 2 3 4 5 6
|
trljat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
| 8 |
1 2 3 4 5 6
|
trljat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
| 9 |
7 8
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ) |