| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk.b |
|
| 2 |
|
cdlemk.l |
|
| 3 |
|
cdlemk.j |
|
| 4 |
|
cdlemk.a |
|
| 5 |
|
cdlemk.h |
|
| 6 |
|
cdlemk.t |
|
| 7 |
|
cdlemk.r |
|
| 8 |
|
simp1 |
|
| 9 |
|
simp2r |
|
| 10 |
|
simp2l |
|
| 11 |
5 6
|
ltrncnv |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
5 6
|
ltrnco |
|
| 14 |
8 9 12 13
|
syl3anc |
|
| 15 |
2 4 5 6
|
ltrnel |
|
| 16 |
15
|
3adant2r |
|
| 17 |
2 3 4 5 6 7
|
trljat3 |
|
| 18 |
8 14 16 17
|
syl3anc |
|
| 19 |
|
simp3l |
|
| 20 |
2 4 5 6
|
ltrncoval |
|
| 21 |
8 14 10 19 20
|
syl121anc |
|
| 22 |
|
coass |
|
| 23 |
1 5 6
|
ltrn1o |
|
| 24 |
8 10 23
|
syl2anc |
|
| 25 |
|
f1ococnv1 |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
coeq2d |
|
| 28 |
1 5 6
|
ltrn1o |
|
| 29 |
8 9 28
|
syl2anc |
|
| 30 |
|
f1of |
|
| 31 |
|
fcoi1 |
|
| 32 |
29 30 31
|
3syl |
|
| 33 |
27 32
|
eqtrd |
|
| 34 |
22 33
|
eqtrid |
|
| 35 |
34
|
fveq1d |
|
| 36 |
21 35
|
eqtr3d |
|
| 37 |
36
|
oveq1d |
|
| 38 |
18 37
|
eqtr2d |
|