| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk.b |
|
| 2 |
|
cdlemk.l |
|
| 3 |
|
cdlemk.j |
|
| 4 |
|
cdlemk.a |
|
| 5 |
|
cdlemk.h |
|
| 6 |
|
cdlemk.t |
|
| 7 |
|
cdlemk.r |
|
| 8 |
|
cdlemk.m |
|
| 9 |
|
simp1l |
|
| 10 |
|
simp1 |
|
| 11 |
|
simp2l |
|
| 12 |
|
simp32l |
|
| 13 |
1 4 5 6 7
|
trlnidat |
|
| 14 |
10 11 12 13
|
syl3anc |
|
| 15 |
|
simp2r |
|
| 16 |
|
simp31 |
|
| 17 |
4 5 6 7
|
trlcocnvat |
|
| 18 |
10 15 11 16 17
|
syl121anc |
|
| 19 |
|
simp33l |
|
| 20 |
2 4 5 6
|
ltrnat |
|
| 21 |
10 11 19 20
|
syl3anc |
|
| 22 |
5 6
|
ltrncnv |
|
| 23 |
10 11 22
|
syl2anc |
|
| 24 |
5 6 7
|
trlcnv |
|
| 25 |
10 11 24
|
syl2anc |
|
| 26 |
16
|
necomd |
|
| 27 |
25 26
|
eqnetrd |
|
| 28 |
|
simp32r |
|
| 29 |
1 5 6 7
|
trlcone |
|
| 30 |
10 23 15 27 28 29
|
syl122anc |
|
| 31 |
5 6
|
ltrncom |
|
| 32 |
10 23 15 31
|
syl3anc |
|
| 33 |
32
|
fveq2d |
|
| 34 |
30 25 33
|
3netr3d |
|
| 35 |
|
simp33 |
|
| 36 |
2 4 5 6
|
ltrnel |
|
| 37 |
36
|
simprd |
|
| 38 |
10 11 35 37
|
syl3anc |
|
| 39 |
2 5 6 7
|
trlle |
|
| 40 |
10 11 39
|
syl2anc |
|
| 41 |
5 6
|
ltrnco |
|
| 42 |
10 15 23 41
|
syl3anc |
|
| 43 |
2 5 6 7
|
trlle |
|
| 44 |
10 42 43
|
syl2anc |
|
| 45 |
9
|
hllatd |
|
| 46 |
1 4
|
atbase |
|
| 47 |
14 46
|
syl |
|
| 48 |
1 4
|
atbase |
|
| 49 |
18 48
|
syl |
|
| 50 |
|
simp1r |
|
| 51 |
1 5
|
lhpbase |
|
| 52 |
50 51
|
syl |
|
| 53 |
1 2 3
|
latjle12 |
|
| 54 |
45 47 49 52 53
|
syl13anc |
|
| 55 |
40 44 54
|
mpbi2and |
|
| 56 |
1 4
|
atbase |
|
| 57 |
21 56
|
syl |
|
| 58 |
1 3 4
|
hlatjcl |
|
| 59 |
9 14 18 58
|
syl3anc |
|
| 60 |
1 2
|
lattr |
|
| 61 |
45 57 59 52 60
|
syl13anc |
|
| 62 |
55 61
|
mpan2d |
|
| 63 |
38 62
|
mtod |
|
| 64 |
2 3 8 4
|
2llnma2 |
|
| 65 |
9 14 18 21 34 63 64
|
syl132anc |
|