Metamath Proof Explorer


Theorem cdlemk3

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 3-Jul-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
Assertion cdlemk3 K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F P ˙ R F ˙ F P ˙ R G F -1 = F P

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 simp1l K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W K HL
10 simp1 K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W K HL W H
11 simp2l K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F T
12 simp32l K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F I B
13 1 4 5 6 7 trlnidat K HL W H F T F I B R F A
14 10 11 12 13 syl3anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F A
15 simp2r K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W G T
16 simp31 K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R G R F
17 4 5 6 7 trlcocnvat K HL W H G T F T R G R F R G F -1 A
18 10 15 11 16 17 syl121anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R G F -1 A
19 simp33l K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W P A
20 2 4 5 6 ltrnat K HL W H F T P A F P A
21 10 11 19 20 syl3anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F P A
22 5 6 ltrncnv K HL W H F T F -1 T
23 10 11 22 syl2anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F -1 T
24 5 6 7 trlcnv K HL W H F T R F -1 = R F
25 10 11 24 syl2anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F -1 = R F
26 16 necomd K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F R G
27 25 26 eqnetrd K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F -1 R G
28 simp32r K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W G I B
29 1 5 6 7 trlcone K HL W H F -1 T G T R F -1 R G G I B R F -1 R F -1 G
30 10 23 15 27 28 29 syl122anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F -1 R F -1 G
31 5 6 ltrncom K HL W H F -1 T G T F -1 G = G F -1
32 10 23 15 31 syl3anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F -1 G = G F -1
33 32 fveq2d K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F -1 G = R G F -1
34 30 25 33 3netr3d K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F R G F -1
35 simp33 K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W P A ¬ P ˙ W
36 2 4 5 6 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
37 36 simprd K HL W H F T P A ¬ P ˙ W ¬ F P ˙ W
38 10 11 35 37 syl3anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W ¬ F P ˙ W
39 2 5 6 7 trlle K HL W H F T R F ˙ W
40 10 11 39 syl2anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F ˙ W
41 5 6 ltrnco K HL W H G T F -1 T G F -1 T
42 10 15 23 41 syl3anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W G F -1 T
43 2 5 6 7 trlle K HL W H G F -1 T R G F -1 ˙ W
44 10 42 43 syl2anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R G F -1 ˙ W
45 9 hllatd K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W K Lat
46 1 4 atbase R F A R F B
47 14 46 syl K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F B
48 1 4 atbase R G F -1 A R G F -1 B
49 18 48 syl K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R G F -1 B
50 simp1r K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W W H
51 1 5 lhpbase W H W B
52 50 51 syl K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W W B
53 1 2 3 latjle12 K Lat R F B R G F -1 B W B R F ˙ W R G F -1 ˙ W R F ˙ R G F -1 ˙ W
54 45 47 49 52 53 syl13anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F ˙ W R G F -1 ˙ W R F ˙ R G F -1 ˙ W
55 40 44 54 mpbi2and K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F ˙ R G F -1 ˙ W
56 1 4 atbase F P A F P B
57 21 56 syl K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F P B
58 1 3 4 hlatjcl K HL R F A R G F -1 A R F ˙ R G F -1 B
59 9 14 18 58 syl3anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W R F ˙ R G F -1 B
60 1 2 lattr K Lat F P B R F ˙ R G F -1 B W B F P ˙ R F ˙ R G F -1 R F ˙ R G F -1 ˙ W F P ˙ W
61 45 57 59 52 60 syl13anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F P ˙ R F ˙ R G F -1 R F ˙ R G F -1 ˙ W F P ˙ W
62 55 61 mpan2d K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F P ˙ R F ˙ R G F -1 F P ˙ W
63 38 62 mtod K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W ¬ F P ˙ R F ˙ R G F -1
64 2 3 8 4 2llnma2 K HL R F A R G F -1 A F P A R F R G F -1 ¬ F P ˙ R F ˙ R G F -1 F P ˙ R F ˙ F P ˙ R G F -1 = F P
65 9 14 18 21 34 63 64 syl132anc K HL W H F T G T R G R F F I B G I B P A ¬ P ˙ W F P ˙ R F ˙ F P ˙ R G F -1 = F P