Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|
2 |
|
cdlemk.l |
|
3 |
|
cdlemk.j |
|
4 |
|
cdlemk.a |
|
5 |
|
cdlemk.h |
|
6 |
|
cdlemk.t |
|
7 |
|
cdlemk.r |
|
8 |
|
cdlemk.m |
|
9 |
|
simp1l |
|
10 |
|
simp1 |
|
11 |
|
simp2l |
|
12 |
|
simp3l |
|
13 |
2 4 5 6
|
ltrnat |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
|
simp2r |
|
16 |
2 4 5 6
|
ltrnat |
|
17 |
10 15 12 16
|
syl3anc |
|
18 |
2 3 4
|
hlatlej1 |
|
19 |
9 14 17 18
|
syl3anc |
|
20 |
9
|
hllatd |
|
21 |
1 4
|
atbase |
|
22 |
14 21
|
syl |
|
23 |
1 4
|
atbase |
|
24 |
17 23
|
syl |
|
25 |
1 3
|
latjcl |
|
26 |
20 22 24 25
|
syl3anc |
|
27 |
|
simp1r |
|
28 |
1 5
|
lhpbase |
|
29 |
27 28
|
syl |
|
30 |
2 3 4
|
hlatlej2 |
|
31 |
9 14 17 30
|
syl3anc |
|
32 |
1 2 3 8 4
|
atmod3i1 |
|
33 |
9 17 26 29 31 32
|
syl131anc |
|
34 |
5 6
|
ltrncnv |
|
35 |
10 11 34
|
syl2anc |
|
36 |
5 6
|
ltrnco |
|
37 |
10 15 35 36
|
syl3anc |
|
38 |
2 4 5 6
|
ltrnel |
|
39 |
11 38
|
syld3an2 |
|
40 |
2 3 8 4 5 6 7
|
trlval2 |
|
41 |
10 37 39 40
|
syl3anc |
|
42 |
1 5 6
|
ltrn1o |
|
43 |
10 11 42
|
syl2anc |
|
44 |
|
f1ococnv1 |
|
45 |
43 44
|
syl |
|
46 |
45
|
coeq2d |
|
47 |
1 5 6
|
ltrn1o |
|
48 |
10 15 47
|
syl2anc |
|
49 |
|
f1of |
|
50 |
|
fcoi1 |
|
51 |
48 49 50
|
3syl |
|
52 |
46 51
|
eqtr2d |
|
53 |
|
coass |
|
54 |
52 53
|
eqtr4di |
|
55 |
54
|
fveq1d |
|
56 |
2 4 5 6
|
ltrncoval |
|
57 |
10 37 11 12 56
|
syl121anc |
|
58 |
55 57
|
eqtrd |
|
59 |
58
|
oveq2d |
|
60 |
59
|
eqcomd |
|
61 |
60
|
oveq1d |
|
62 |
41 61
|
eqtrd |
|
63 |
62
|
oveq2d |
|
64 |
2 4 5 6
|
ltrnel |
|
65 |
15 64
|
syld3an2 |
|
66 |
|
eqid |
|
67 |
2 3 66 4 5
|
lhpjat2 |
|
68 |
10 65 67
|
syl2anc |
|
69 |
68
|
oveq2d |
|
70 |
|
hlol |
|
71 |
9 70
|
syl |
|
72 |
1 8 66
|
olm11 |
|
73 |
71 26 72
|
syl2anc |
|
74 |
69 73
|
eqtr2d |
|
75 |
33 63 74
|
3eqtr4rd |
|
76 |
19 75
|
breqtrd |
|