Metamath Proof Explorer


Theorem cdlemk4

Description: Part of proof of Lemma K of Crawley p. 118, last line. We use X for their h, since H is already used. (Contributed by NM, 24-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
Assertion cdlemk4 K HL W H F T X T P A ¬ P ˙ W F P ˙ X P ˙ R X F -1

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 simp1l K HL W H F T X T P A ¬ P ˙ W K HL
10 simp1 K HL W H F T X T P A ¬ P ˙ W K HL W H
11 simp2l K HL W H F T X T P A ¬ P ˙ W F T
12 simp3l K HL W H F T X T P A ¬ P ˙ W P A
13 2 4 5 6 ltrnat K HL W H F T P A F P A
14 10 11 12 13 syl3anc K HL W H F T X T P A ¬ P ˙ W F P A
15 simp2r K HL W H F T X T P A ¬ P ˙ W X T
16 2 4 5 6 ltrnat K HL W H X T P A X P A
17 10 15 12 16 syl3anc K HL W H F T X T P A ¬ P ˙ W X P A
18 2 3 4 hlatlej1 K HL F P A X P A F P ˙ F P ˙ X P
19 9 14 17 18 syl3anc K HL W H F T X T P A ¬ P ˙ W F P ˙ F P ˙ X P
20 9 hllatd K HL W H F T X T P A ¬ P ˙ W K Lat
21 1 4 atbase F P A F P B
22 14 21 syl K HL W H F T X T P A ¬ P ˙ W F P B
23 1 4 atbase X P A X P B
24 17 23 syl K HL W H F T X T P A ¬ P ˙ W X P B
25 1 3 latjcl K Lat F P B X P B F P ˙ X P B
26 20 22 24 25 syl3anc K HL W H F T X T P A ¬ P ˙ W F P ˙ X P B
27 simp1r K HL W H F T X T P A ¬ P ˙ W W H
28 1 5 lhpbase W H W B
29 27 28 syl K HL W H F T X T P A ¬ P ˙ W W B
30 2 3 4 hlatlej2 K HL F P A X P A X P ˙ F P ˙ X P
31 9 14 17 30 syl3anc K HL W H F T X T P A ¬ P ˙ W X P ˙ F P ˙ X P
32 1 2 3 8 4 atmod3i1 K HL X P A F P ˙ X P B W B X P ˙ F P ˙ X P X P ˙ F P ˙ X P ˙ W = F P ˙ X P ˙ X P ˙ W
33 9 17 26 29 31 32 syl131anc K HL W H F T X T P A ¬ P ˙ W X P ˙ F P ˙ X P ˙ W = F P ˙ X P ˙ X P ˙ W
34 5 6 ltrncnv K HL W H F T F -1 T
35 10 11 34 syl2anc K HL W H F T X T P A ¬ P ˙ W F -1 T
36 5 6 ltrnco K HL W H X T F -1 T X F -1 T
37 10 15 35 36 syl3anc K HL W H F T X T P A ¬ P ˙ W X F -1 T
38 2 4 5 6 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
39 11 38 syld3an2 K HL W H F T X T P A ¬ P ˙ W F P A ¬ F P ˙ W
40 2 3 8 4 5 6 7 trlval2 K HL W H X F -1 T F P A ¬ F P ˙ W R X F -1 = F P ˙ X F -1 F P ˙ W
41 10 37 39 40 syl3anc K HL W H F T X T P A ¬ P ˙ W R X F -1 = F P ˙ X F -1 F P ˙ W
42 1 5 6 ltrn1o K HL W H F T F : B 1-1 onto B
43 10 11 42 syl2anc K HL W H F T X T P A ¬ P ˙ W F : B 1-1 onto B
44 f1ococnv1 F : B 1-1 onto B F -1 F = I B
45 43 44 syl K HL W H F T X T P A ¬ P ˙ W F -1 F = I B
46 45 coeq2d K HL W H F T X T P A ¬ P ˙ W X F -1 F = X I B
47 1 5 6 ltrn1o K HL W H X T X : B 1-1 onto B
48 10 15 47 syl2anc K HL W H F T X T P A ¬ P ˙ W X : B 1-1 onto B
49 f1of X : B 1-1 onto B X : B B
50 fcoi1 X : B B X I B = X
51 48 49 50 3syl K HL W H F T X T P A ¬ P ˙ W X I B = X
52 46 51 eqtr2d K HL W H F T X T P A ¬ P ˙ W X = X F -1 F
53 coass X F -1 F = X F -1 F
54 52 53 eqtr4di K HL W H F T X T P A ¬ P ˙ W X = X F -1 F
55 54 fveq1d K HL W H F T X T P A ¬ P ˙ W X P = X F -1 F P
56 2 4 5 6 ltrncoval K HL W H X F -1 T F T P A X F -1 F P = X F -1 F P
57 10 37 11 12 56 syl121anc K HL W H F T X T P A ¬ P ˙ W X F -1 F P = X F -1 F P
58 55 57 eqtrd K HL W H F T X T P A ¬ P ˙ W X P = X F -1 F P
59 58 oveq2d K HL W H F T X T P A ¬ P ˙ W F P ˙ X P = F P ˙ X F -1 F P
60 59 eqcomd K HL W H F T X T P A ¬ P ˙ W F P ˙ X F -1 F P = F P ˙ X P
61 60 oveq1d K HL W H F T X T P A ¬ P ˙ W F P ˙ X F -1 F P ˙ W = F P ˙ X P ˙ W
62 41 61 eqtrd K HL W H F T X T P A ¬ P ˙ W R X F -1 = F P ˙ X P ˙ W
63 62 oveq2d K HL W H F T X T P A ¬ P ˙ W X P ˙ R X F -1 = X P ˙ F P ˙ X P ˙ W
64 2 4 5 6 ltrnel K HL W H X T P A ¬ P ˙ W X P A ¬ X P ˙ W
65 15 64 syld3an2 K HL W H F T X T P A ¬ P ˙ W X P A ¬ X P ˙ W
66 eqid 1. K = 1. K
67 2 3 66 4 5 lhpjat2 K HL W H X P A ¬ X P ˙ W X P ˙ W = 1. K
68 10 65 67 syl2anc K HL W H F T X T P A ¬ P ˙ W X P ˙ W = 1. K
69 68 oveq2d K HL W H F T X T P A ¬ P ˙ W F P ˙ X P ˙ X P ˙ W = F P ˙ X P ˙ 1. K
70 hlol K HL K OL
71 9 70 syl K HL W H F T X T P A ¬ P ˙ W K OL
72 1 8 66 olm11 K OL F P ˙ X P B F P ˙ X P ˙ 1. K = F P ˙ X P
73 71 26 72 syl2anc K HL W H F T X T P A ¬ P ˙ W F P ˙ X P ˙ 1. K = F P ˙ X P
74 69 73 eqtr2d K HL W H F T X T P A ¬ P ˙ W F P ˙ X P = F P ˙ X P ˙ X P ˙ W
75 33 63 74 3eqtr4rd K HL W H F T X T P A ¬ P ˙ W F P ˙ X P = X P ˙ R X F -1
76 19 75 breqtrd K HL W H F T X T P A ¬ P ˙ W F P ˙ X P ˙ R X F -1