Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemk.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemk.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemk.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
12 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
13 |
2 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
15 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑋 ∈ 𝑇 ) |
16 |
2 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
17 |
10 15 12 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) |
18 |
2 3 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) |
19 |
9 14 17 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) |
20 |
9
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
21 |
1 4
|
atbase |
⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
22 |
14 21
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
23 |
1 4
|
atbase |
⊢ ( ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 → ( 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
24 |
17 23
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
25 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ∧ ( 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) |
26 |
20 22 24 25
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) |
27 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
28 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
30 |
2 3 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝑋 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) |
31 |
9 14 17 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) |
32 |
1 2 3 8 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ ( 𝑋 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) → ( ( 𝑋 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑋 ‘ 𝑃 ) ∨ 𝑊 ) ) ) |
33 |
9 17 26 29 31 32
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑋 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑋 ‘ 𝑃 ) ∨ 𝑊 ) ) ) |
34 |
5 6
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
35 |
10 11 34
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ◡ 𝐹 ∈ 𝑇 ) |
36 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
37 |
10 15 35 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
38 |
2 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
39 |
11 38
|
syld3an2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
40 |
2 3 8 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
41 |
10 37 39 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
42 |
1 5 6
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
43 |
10 11 42
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
44 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
45 |
43 44
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
46 |
45
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) = ( 𝑋 ∘ ( I ↾ 𝐵 ) ) ) |
47 |
1 5 6
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ) → 𝑋 : 𝐵 –1-1-onto→ 𝐵 ) |
48 |
10 15 47
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑋 : 𝐵 –1-1-onto→ 𝐵 ) |
49 |
|
f1of |
⊢ ( 𝑋 : 𝐵 –1-1-onto→ 𝐵 → 𝑋 : 𝐵 ⟶ 𝐵 ) |
50 |
|
fcoi1 |
⊢ ( 𝑋 : 𝐵 ⟶ 𝐵 → ( 𝑋 ∘ ( I ↾ 𝐵 ) ) = 𝑋 ) |
51 |
48 49 50
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ( I ↾ 𝐵 ) ) = 𝑋 ) |
52 |
46 51
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑋 = ( 𝑋 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) ) |
53 |
|
coass |
⊢ ( ( 𝑋 ∘ ◡ 𝐹 ) ∘ 𝐹 ) = ( 𝑋 ∘ ( ◡ 𝐹 ∘ 𝐹 ) ) |
54 |
52 53
|
eqtr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑋 = ( ( 𝑋 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ) |
55 |
54
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ‘ 𝑃 ) = ( ( ( 𝑋 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) ) |
56 |
2 4 5 6
|
ltrncoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑋 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
57 |
10 37 11 12 56
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑋 ∘ ◡ 𝐹 ) ∘ 𝐹 ) ‘ 𝑃 ) = ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
58 |
55 57
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ‘ 𝑃 ) = ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
59 |
58
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |
60 |
59
|
eqcomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) |
61 |
60
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐹 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
62 |
41 61
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
63 |
62
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) = ( ( 𝑋 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
64 |
2 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑋 ‘ 𝑃 ) ≤ 𝑊 ) ) |
65 |
15 64
|
syld3an2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑋 ‘ 𝑃 ) ≤ 𝑊 ) ) |
66 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
67 |
2 3 66 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑋 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝑋 ‘ 𝑃 ) ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
68 |
10 65 67
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑋 ‘ 𝑃 ) ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
69 |
68
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑋 ‘ 𝑃 ) ∨ 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) ) |
70 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
71 |
9 70
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
72 |
1 8 66
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) |
73 |
71 26 72
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ) |
74 |
69 73
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑋 ‘ 𝑃 ) ∨ 𝑊 ) ) ) |
75 |
33 63 74
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) = ( ( 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) |
76 |
19 75
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) |