Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemk.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemk.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemk.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
10 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
11 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 ∈ 𝑇 ) |
12 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐺 ∈ 𝑇 ) |
13 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) |
14 |
1 2 3 4 5 6 7 8
|
cdlemk3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |
15 |
9 10 11 12 13 14
|
syl221anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |
16 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑋 ∈ 𝑇 ) |
17 |
|
simp33l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑃 ∈ 𝐴 ) |
18 |
|
simp33r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
19 |
1 2 3 4 5 6 7 8
|
cdlemk4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) |
20 |
9 10 11 16 17 18 19
|
syl222anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) |
21 |
15 20
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ≤ ( ( 𝑋 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) |