Metamath Proof Explorer


Theorem cdlemk5a

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 3-Jul-2013)

Ref Expression
Hypotheses cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk.l = ( le ‘ 𝐾 )
cdlemk.j = ( join ‘ 𝐾 )
cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.m = ( meet ‘ 𝐾 )
Assertion cdlemk5a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk.l = ( le ‘ 𝐾 )
3 cdlemk.j = ( join ‘ 𝐾 )
4 cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk.m = ( meet ‘ 𝐾 )
9 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝐾 ∈ HL )
10 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝑊𝐻 )
11 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝐹𝑇 )
12 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝐺𝑇 )
13 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) )
14 1 2 3 4 5 6 7 8 cdlemk3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) = ( 𝐹𝑃 ) )
15 9 10 11 12 13 14 syl221anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) = ( 𝐹𝑃 ) )
16 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝑋𝑇 )
17 simp33l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝑃𝐴 )
18 simp33r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ¬ 𝑃 𝑊 )
19 1 2 3 4 5 6 7 8 cdlemk4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹𝑃 ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )
20 9 10 11 16 17 18 19 syl222anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( 𝐹𝑃 ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )
21 15 20 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇𝑋𝑇 ) ∧ ( ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ( ( 𝐹𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ( ( 𝑋𝑃 ) ( 𝑅 ‘ ( 𝑋 𝐹 ) ) ) )