Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemk.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemk.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemk.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemk.m |
|- ./\ = ( meet ` K ) |
9 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> K e. HL ) |
10 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> W e. H ) |
11 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T ) |
12 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> G e. T ) |
13 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) |
14 |
1 2 3 4 5 6 7 8
|
cdlemk3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( F ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( F ` P ) ) |
15 |
9 10 11 12 13 14
|
syl221anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( F ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( F ` P ) ) |
16 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> X e. T ) |
17 |
|
simp33l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> P e. A ) |
18 |
|
simp33r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> -. P .<_ W ) |
19 |
1 2 3 4 5 6 7 8
|
cdlemk4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) |
20 |
9 10 11 16 17 18 19
|
syl222anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F ` P ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) |
21 |
15 20
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( F ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' F ) ) ) ) |