Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemk.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemk.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemk.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemk.m |
|- ./\ = ( meet ` K ) |
9 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> K e. HL ) |
10 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T ) |
12 |
|
simp32l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F =/= ( _I |` B ) ) |
13 |
1 4 5 6 7
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( R ` F ) e. A ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) e. A ) |
15 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> G e. T ) |
16 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) =/= ( R ` F ) ) |
17 |
4 5 6 7
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ F e. T ) /\ ( R ` G ) =/= ( R ` F ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
18 |
10 15 11 16 17
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
19 |
|
simp33l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> P e. A ) |
20 |
2 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) |
21 |
10 11 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F ` P ) e. A ) |
22 |
5 6
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
23 |
10 11 22
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> `' F e. T ) |
24 |
5 6 7
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |
25 |
10 11 24
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` `' F ) = ( R ` F ) ) |
26 |
16
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) =/= ( R ` G ) ) |
27 |
25 26
|
eqnetrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` `' F ) =/= ( R ` G ) ) |
28 |
|
simp32r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> G =/= ( _I |` B ) ) |
29 |
1 5 6 7
|
trlcone |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' F e. T /\ G e. T ) /\ ( ( R ` `' F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) -> ( R ` `' F ) =/= ( R ` ( `' F o. G ) ) ) |
30 |
10 23 15 27 28 29
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` `' F ) =/= ( R ` ( `' F o. G ) ) ) |
31 |
5 6
|
ltrncom |
|- ( ( ( K e. HL /\ W e. H ) /\ `' F e. T /\ G e. T ) -> ( `' F o. G ) = ( G o. `' F ) ) |
32 |
10 23 15 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( `' F o. G ) = ( G o. `' F ) ) |
33 |
32
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` ( `' F o. G ) ) = ( R ` ( G o. `' F ) ) ) |
34 |
30 25 33
|
3netr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) =/= ( R ` ( G o. `' F ) ) ) |
35 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
36 |
2 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
37 |
36
|
simprd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> -. ( F ` P ) .<_ W ) |
38 |
10 11 35 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> -. ( F ` P ) .<_ W ) |
39 |
2 5 6 7
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W ) |
40 |
10 11 39
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) .<_ W ) |
41 |
5 6
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ `' F e. T ) -> ( G o. `' F ) e. T ) |
42 |
10 15 23 41
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( G o. `' F ) e. T ) |
43 |
2 5 6 7
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G o. `' F ) e. T ) -> ( R ` ( G o. `' F ) ) .<_ W ) |
44 |
10 42 43
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` ( G o. `' F ) ) .<_ W ) |
45 |
9
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> K e. Lat ) |
46 |
1 4
|
atbase |
|- ( ( R ` F ) e. A -> ( R ` F ) e. B ) |
47 |
14 46
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) e. B ) |
48 |
1 4
|
atbase |
|- ( ( R ` ( G o. `' F ) ) e. A -> ( R ` ( G o. `' F ) ) e. B ) |
49 |
18 48
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` ( G o. `' F ) ) e. B ) |
50 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> W e. H ) |
51 |
1 5
|
lhpbase |
|- ( W e. H -> W e. B ) |
52 |
50 51
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> W e. B ) |
53 |
1 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( ( R ` F ) e. B /\ ( R ` ( G o. `' F ) ) e. B /\ W e. B ) ) -> ( ( ( R ` F ) .<_ W /\ ( R ` ( G o. `' F ) ) .<_ W ) <-> ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) .<_ W ) ) |
54 |
45 47 49 52 53
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( R ` F ) .<_ W /\ ( R ` ( G o. `' F ) ) .<_ W ) <-> ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) .<_ W ) ) |
55 |
40 44 54
|
mpbi2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) .<_ W ) |
56 |
1 4
|
atbase |
|- ( ( F ` P ) e. A -> ( F ` P ) e. B ) |
57 |
21 56
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F ` P ) e. B ) |
58 |
1 3 4
|
hlatjcl |
|- ( ( K e. HL /\ ( R ` F ) e. A /\ ( R ` ( G o. `' F ) ) e. A ) -> ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) |
59 |
9 14 18 58
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) e. B ) |
60 |
1 2
|
lattr |
|- ( ( K e. Lat /\ ( ( F ` P ) e. B /\ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) e. B /\ W e. B ) ) -> ( ( ( F ` P ) .<_ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) /\ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) .<_ W ) -> ( F ` P ) .<_ W ) ) |
61 |
45 57 59 52 60
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( F ` P ) .<_ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) /\ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) .<_ W ) -> ( F ` P ) .<_ W ) ) |
62 |
55 61
|
mpan2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( F ` P ) .<_ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) -> ( F ` P ) .<_ W ) ) |
63 |
38 62
|
mtod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> -. ( F ` P ) .<_ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) ) |
64 |
2 3 8 4
|
2llnma2 |
|- ( ( K e. HL /\ ( ( R ` F ) e. A /\ ( R ` ( G o. `' F ) ) e. A /\ ( F ` P ) e. A ) /\ ( ( R ` F ) =/= ( R ` ( G o. `' F ) ) /\ -. ( F ` P ) .<_ ( ( R ` F ) .\/ ( R ` ( G o. `' F ) ) ) ) ) -> ( ( ( F ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( F ` P ) ) |
65 |
9 14 18 21 34 63 64
|
syl132anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( F ` P ) .\/ ( R ` F ) ) ./\ ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( F ` P ) ) |