| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdlemk.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdlemk.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdlemk.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdlemk.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdlemk.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
cdlemk.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
cdlemk.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
| 10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 ∈ 𝑇 ) |
| 12 |
|
simp32l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) ) |
| 13 |
1 4 5 6 7
|
trlnidat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
| 15 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐺 ∈ 𝑇 ) |
| 16 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
| 17 |
4 5 6 7
|
trlcocnvat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ) |
| 18 |
10 15 11 16 17
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ) |
| 19 |
|
simp33l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 20 |
2 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
| 21 |
10 11 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
| 22 |
5 6
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
| 23 |
10 11 22
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ◡ 𝐹 ∈ 𝑇 ) |
| 24 |
5 6 7
|
trlcnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
| 25 |
10 11 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
| 26 |
16
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
| 27 |
25 26
|
eqnetrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ ◡ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
| 28 |
|
simp32r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) ) |
| 29 |
1 5 6 7
|
trlcone |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ ◡ 𝐹 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑅 ‘ ◡ 𝐹 ) ≠ ( 𝑅 ‘ ( ◡ 𝐹 ∘ 𝐺 ) ) ) |
| 30 |
10 23 15 27 28 29
|
syl122anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ ◡ 𝐹 ) ≠ ( 𝑅 ‘ ( ◡ 𝐹 ∘ 𝐺 ) ) ) |
| 31 |
5 6
|
ltrncom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ◡ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ◡ 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ ◡ 𝐹 ) ) |
| 32 |
10 23 15 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ◡ 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ ◡ 𝐹 ) ) |
| 33 |
32
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ ( ◡ 𝐹 ∘ 𝐺 ) ) = ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) |
| 34 |
30 25 33
|
3netr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) |
| 35 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 36 |
2 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 37 |
36
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) |
| 38 |
10 11 35 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) |
| 39 |
2 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
| 40 |
10 11 39
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
| 41 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 42 |
10 15 23 41
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
| 43 |
2 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) |
| 44 |
10 42 43
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) |
| 45 |
9
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐾 ∈ Lat ) |
| 46 |
1 4
|
atbase |
⊢ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
| 47 |
14 46
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
| 48 |
1 4
|
atbase |
⊢ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
| 49 |
18 48
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
| 50 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
| 51 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 52 |
50 51
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐵 ) |
| 53 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) ) |
| 54 |
45 47 49 52 53
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) ) |
| 55 |
40 44 54
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) |
| 56 |
1 4
|
atbase |
⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
| 57 |
21 56
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
| 58 |
1 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
| 59 |
9 14 18 58
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
| 60 |
1 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) → ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 61 |
45 57 59 52 60
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ≤ 𝑊 ) → ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 62 |
55 61
|
mpan2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 63 |
38 62
|
mtod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ¬ ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) |
| 64 |
2 3 8 4
|
2llnma2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ≠ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |
| 65 |
9 14 18 21 34 63 64
|
syl132anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |