Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995) (Proof shortened by BJ, 1-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceqex | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.8a | ||
| 2 | 1 | ex | |
| 3 | eqvisset | ||
| 4 | alexeqg | ||
| 5 | 3 4 | syl | |
| 6 | sp | ||
| 7 | 6 | com12 | |
| 8 | 5 7 | sylbird | |
| 9 | 2 8 | impbid |